Parametric study of water vapor and water ice particle plumes based on DSMC calculations: Application to the Enceladus geysers

Icarus - Tập 319 - Trang 729-744 - 2019
A. Mahieux1,2,3, D.B. Goldstein1, P.L. Varghese1, L.M. Trafton4
1The University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, Austin, TX, USA
2Belgian Institute for Space Aeronomy, Brussels, Belgium
3Fonds National de la Recherche Scientifique, Brussels, Belgium
4The University of Texas at Austin, Department of Astronomy, Austin, TX, USA

Tài liệu tham khảo

Anderson, 2011 Berg, 2015, Simulating water vapor plumes on Europa Berg, 2016, DSMC simulation of Europa water vapor plumes, Icarus, 277, 370, 10.1016/j.icarus.2016.05.030 Bird, 1994 Burger, 2007, Understanding the escape of water from Enceladus, J. Geophys. Res., 112 Dettleff, 1991, Plume flow and plume impingement in space technology, Prog. Aerosp. Sci., 28, 1, 10.1016/0376-0421(91)90008-R Dong, 2011, The water vapor plumes of Enceladus, J. Geophys. Res., 116 Draper, 1966, Analytical approximation for the flow from a nozzle into a vacuum, J. Spacecraft Rockets, 3, 1552, 10.2514/3.28700 Esposito, 2004, The Cassini ultraviolet imaging spectrograph investigation, Space Sci. Rev., 115, 299, 10.1007/s11214-004-1455-8 Goguen, 2013, The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover, Icarus, 226, 1128, 10.1016/j.icarus.2013.07.012 Hansen, 2006, Enceladus' water vapor plume, Science, 311, 1422, 10.1126/science.1121254 Hansen, 2008, Water vapour jets inside the plume of gas leaving Enceladus, Nature, 456, 477, 10.1038/nature07542 Hansen, 2011, The composition and structure of the Enceladus plume, Geophys. Res. Lett., 38 Hedman, 2018, Spatial variations in the dust-to-gas ratio of Enceladus’ plume, Icarus, 305, 123, 10.1016/j.icarus.2018.01.006 Howett, 2011, High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data, J. Geophys. Res., 116 Ingersoll, 2011, Total particulate mass in Enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images, Icarus, 216, 492, 10.1016/j.icarus.2011.09.018 Kasprzak, 1996, Cassini orbiter ion neutral mass spectrometer instrument, 2803, 129 Kieffer, 2006, A Clathrate Reservoir Hypothesis for Enceladus' South Polar Plume, Science, 314, 1764, 10.1126/science.1133519 Kite, 2016, Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes, Proc. Natl Acad. Sci., 113, 3972, 10.1073/pnas.1520507113 Porco, 2014, How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related, Astron. J., 148 Porco, 2006, Cassini observes the active south pole of Enceladus, Science, 311, 1393, 10.1126/science.1123013 Porco, 2004, Cassini imaging science: instrument characteristics and anticipated scientific investigations at Saturn, Space Sci. Rev., 115, 363, 10.1007/s11214-004-1456-7 Portyankina, 2016, Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations, 2600 Postberg, 2009, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, 459, 1098, 10.1038/nature08046 Quick, 2013, Constraints on the detection of cryovolcanic plumes on Europa, Planet. Space Sci., 86, 1, 10.1016/j.pss.2013.06.028 Saur, 2008, Evidence for temporal variability of Enceladus’ gas jets: modeling of cassini observations, J. Geophys. Res., 35 Schmidt, 2008, Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures, Nature, 451, 685, 10.1038/nature06491 Schmidt, 2008, Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures, Nature, 451, 685, 10.1038/nature06491 Smith, 2010, Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere, J. Geophys. Res., 115 Spencer, 2006, Cassini encounters Enceladus: background and the discovery of a south polar hot spot, Science, 311, 1401, 10.1126/science.1121661 Spitale, 2015, Curtain eruptions from Enceladus’ south-polar terrain, Nature, 521, 57, 10.1038/nature14368 Srama, 2004, The Cassini cosmic dust analyzer, Space Sci. Rev., 114, 465, 10.1007/s11214-004-1435-z Tenishev, 2010, An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus, J. Geophys. Res., 115 Tenishev, 2014, Effect of the tiger stripes on the water vapor distribution in Enceladus’ exosphere, J. Geophys. Res. Planets, 119, 2658, 10.1002/2014JE004700 Teolis, 2017, Enceladus plume structure and time variability: comparison of Cassini observations, Astrobiology, 17, 926, 10.1089/ast.2017.1647 Teolis, 2010, Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini's ion neutral mass spectrometer, J. Geophys. Res., 115 Tian, 2007, Monte Carlo simulations of the water vapor plumes on Enceladus, Icarus, 188, 154, 10.1016/j.icarus.2006.11.010 Waite, 2006, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure, Science, 311, 1419, 10.1126/science.1121290 Yeoh, 2015, On understanding the physics of the Enceladus south polar plume via numerical simulation, Icarus, 253, 205, 10.1016/j.icarus.2015.02.020 Yeoh, 2017, Constraining the Enceladus plume using numerical simulation and Cassini data, Icarus, 281, 357, 10.1016/j.icarus.2016.08.028