Parametric analysis and systems design of dynamic photovoltaic shading modules

Energy Science and Engineering - Tập 4 Số 2 - Trang 134-152 - 2016
Johannes Hofer1, Abel Groenewolt2, Prageeth Jayathissa1, Zoltán Nagy1, Arno Schlueter1
1Architecture and Building Systems Institute of Technology in Architecture ETH Zurich John‐von‐Neumann Weg 9 8093 Zürich Switzerland
2Institute for Computational Design, University of Stuttgart, Keplerstrasse 11, 70174, Stuttgart, Germany

Tóm tắt

AbstractShading systems improve building energy performance and occupant comfort by controlling glare, natural lighting, and solar gain. Integrating PV (photovoltaics) in shading systems opens new opportunities for BIPV (building integrated photovoltaics) on façades. A key problem of such systems is mutual shading among PV modules as it can lead to electrical mismatch losses and overheating effects. In this work, we present a new modeling framework, which couples parametric 3D with high‐resolution electrical modeling of thin‐film PV modules to simulate electric energy yield of geometrically complex PV applications. The developed method is able to predict the shading pattern for individual PV modules with high spatio‐temporal resolution, which is of great importance for electrical system design. The methodology is applied to evaluate the performance of different dynamic BIPV shading system configurations, as well as its sensitivity to façade orientation and module arrangement. The analysis shows, that there is a trade‐off between tracking performance and mutual shading of modules. Distance between modules is a critical parameter influencing the amount of mutual shading and hence limiting solar irradiation and electricity generation of PV shading systems using solar tracking. Planning of module string configuration, PV cell orientation, and location of bypass diodes according to partial shading conditions, reduces electrical mismatch losses and results in significantly higher electricity generation. The integration of parametric 3D and electrical modeling opens new possibilities for PV system design and dynamic control optimization. Though the analysis focuses on BIPV, the method is useful for the planning and operation of solar tracking systems in general.

Từ khóa


Tài liệu tham khảo

10.1002/pip.1167

Jayathissa P. Z.Nagy N.Offedu andA.Schlueter.2015.Numerical Simulation of Energy Performance and Construction of the Adaptive Solar Façade. Proceedings of Advanced Building Skin Conference.

10.1007/978-3-662-47386-3_10

Rossi D., 2012, Adaptive distributed robotics for environmental performance, occupant comfort and architectural expression, Int. J. Arch. Comp., 10, 341

10.1016/S0360-1323(01)00071-3

10.1016/j.solmat.2010.02.015

10.1016/j.solener.2012.05.026

10.1002/pip.4670030204

D'Alessandro V. A.Magnani L.Codecasa F.Di Napoli P.Guerriero andS.Daliento.2015.Dynamic electrothermal simulation of photovoltaic plants. International Conference on Clean Electrical Power (ICCEP) 682–688.

10.1002/pip.847

10.1002/pip.1085

10.1016/j.apenergy.2015.01.060

10.1016/j.renene.2010.12.002

Mermoud A.2012.Optimization of Row‐Arrangement in PV Systems Shading Loss Evaluations According to Module Positioning and Connexions. Proceedings of the 27thEuropean Photovoltaic Solar Energy Conference.

10.1016/j.solener.2013.05.028

10.1016/j.rser.2014.01.070

10.1016/j.renene.2005.09.030

10.1109/JPHOTOV.2013.2270349

10.1016/0379-6787(88)90059-2

10.1016/j.solener.2013.07.008

10.1109/TEC.2007.914308

10.1016/j.solener.2006.12.001

10.1002/pip.1138

10.1016/j.renene.2013.05.040

10.1016/j.solener.2010.04.012

10.1016/j.solener.2011.06.008

10.1016/0038-092X(96)00006-0

10.1016/j.renene.2015.04.041

Capdevila H. A.Marola andM.Herrerias.2013.High resolution shading modeling and performance simulation of sun‐tracking photovoltaic systems. Proceedings of the 9thInt. Conf. on Concentrator Photovoltaic Systems.

10.1109/TPEL.2011.2173353

www.rhino3d.com(accessed 30 June 2015).

www.grasshopper3d.com(accessed 30 June 2015).

10.1002/9781119976998

10.1201/b18119

Jakubiec J. A. andC. F.Reinhart.2011.DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D Daysim and EnergyPlus. Proceedings of the 12th Conference of International Building Performance Simulation Association.

Duffie J. A., 2006, Solar engineering of thermal processes (Vol. 3)

10.1007/978-0-85729-886-7

www.luxrender.net(accessed 30 June 2015).

Pharr M., 2010, Physically based rendering: from theory to implementation

www.meteonorm.com(accessed 30 June 2015).

10.1002/pip.2410

10.1016/j.solmat.2008.11.015

Mermoud A. andT.Lejeune.2010.Performance assessment of a simulation model for PV modules of any available technology. Proc. of the 25th European Photovoltaic Solar Energy Conference.

Product datasheet Shell Solar ST40. Available athttp://www.gehrlicher.com/fileadmin/content/pdfs/de/produktarchiv/Shell_ST40.pdf(accessed 30 June 2015).

www.pvsyst.com(accessed 30 June 2015).

Spirito P. andV.Abergamo.1982.Reverse bias power dissipation of shadowed or faulty cells in different array configurations Proc. of the 25th European Photovoltaic Solar Energy Conference 296–300.

10.1016/j.solmat.2005.06.006

Mack P. T.Walter R.Kniese D.Hariskos andR.Schäffler.2008.Reverse Bias and Reverse Currents in CIGS Thin Film Solar Cells and Modules Proc. of the 23rd European Photovoltaic Solar Energy Conference.

10.1002/pip.773

10.1016/j.apenergy.2010.12.002

10.1002/pip.2373

10.1016/j.renene.2011.12.001

10.1002/pip.833

10.1002/pip.2416

10.1016/j.rser.2012.11.032

Svetozarevic B. Z.Nagy D.Rossi andA.Schlueter.2014.Experimental Characterization of a 2‐DOF Soft Robotic Platform for Architectural Applications. Proceedings of the Robotics Science and Systems Conference UC Berkeley California.

Roudsari M. M.Pak andA.Smith.2014.Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally‐Conscious Design. Proc. of Int. Conf. of IBPSA Chambery France.