Parametric Perturbations and Dynamic System Control

Computational Mathematics and Modeling - Tập 15 - Trang 257-275 - 2004
A. Yu. Loskutov, A. K. Prokhorov, S. D. Rybalko, Yu. S. Fomina

Tóm tắt

The article analyzes dynamical systems with externally applied periodic perturbations in a general setting. We provide a rigorous justification of an approach that reduces such systems to autonomous systems and thus simplifies the analysis. The behavior of families of quadratic one-dimensional maps and circle maps in the presence of parametric perturbations is studied in detail. We prove the existence of periodic perturbations acting strictly on a chaotic subset that stabilize the dynamics and induce the emergence of stable cycles in initially chaotic maps. The analytical results are supplemented with numerical data. It is shown that chaos may be suppressed by a sufficiently complex periodic perturbation.

Tài liệu tham khảo

Proc. SPIE 1993 Annual Meeting “Chaos in Communications”, Vol. 2038, San Diego, CA, July 11-16 (1993). A. Yu. Loskutov and V. M. Tereshko, “Extraction of the prototypes encoded in a chaotic attractor,” in: I. Alexander and J. Taylor, Artificial Neural Networks, Elsevier (1992), pp. 449–452. H. D. I. Abarbanel and P. S. Linsay, “Secure communications and unstable periodic orbits of strange attractors,” IEEE Trans. Circuit Sys., 40, No. 10, 643–645 (1993). Physica D, 84, No. 1-2 (1995). [Special issue on control and ordering in nonlinear systems.] A. Yu. Loskutov, V. M. Tereshko, and K. A. Vasiliev, “Predicted dynamics for cyclic cascades of chaotic deterministic automata,” Int. J. Neural Sys., 6,175–182 (1995). L. Glass, M. R. Guevara, A. Shrier, and R. Perez, “Bifurcation and chaos in a periodically stimulated cardiac oscillator,” Physica D, 7, 89 (1983). L. Glass, “Cardiac arrhythmias and circle maps: A classical problem,” Chaos, 1, No. 1, 13–19 (1991). A. Garfinkel, M. L. Spano, and W. L. Ditto, “Controlling cardiac chaos,” Science, 257, 1230–1235 (1992). A. Yu. Loskutov and S. D. Rybalko, “On the dynamics of the circle map in the presence of parametric perturbation,” Vestnik MGU, Fizika i Astronomiya, 34, No. 4, 19–27 (1993). T. Shinbrot and J. M. Ottino, “A geometric method to create coherent structures in chaotic flows,” Phys. Rev. Lett., 71, 843–847 (1993). A. Yu. Loskutov and G. E. Tomas, “Chaos and destochastization in a two-dimensional lattice of interlinked maps,” Vestnik MGU, Fizika i Astronomiya, 34, No. 5, 3–11 (1993). R. Lima and M. Pettini, “Suppression of chaos by resonant parametric perturbations,” Phys. Rev. A, 41, No. 2, 726–733 (1990). S. Bielawski, D. Derozier, and P. Glorieux, “Controlling unstable periodic orbits by a delayed continuous feedback,” Phys. Rev. E, 49, No. 2, 971–974 (1994). R. Chacon, “Suppression of chaos by selective resonant parametric perturbations,” Phys. Rev. E, 51, No. 1, 761–764 (1995). T. Shinbrot, C. Grebogi, E. Ott, and J. A. Jorke, “Using small perturbations to control chaos,” Nature, 363, 411–417 (1993). J. F. Linder and W. L. Ditto, “Removal, suppression, and control of chaos by nonlinear design,” Appl. Mech. Rev., 48, No. 12, 795–807 (1995). V. V. Alekseev and A. Yu. Loskutov, “Controlling a system with a strange attractor by a periodic parametric perturbation,” Dokl. Akad. Nauk SSSR,293, No. 6,1346–1348 (1987). A. Yu. Loskutov and A. I. Shishmarev, “Control of dynamical systems behavior by parametric perturbations: an analytic approach,” Chaos, 4, No. 2, 351–355 (1994). M. Pettini, “Controlling chaos through parametric excitations,” in: R. Lima, L. Streit, R. Vilela Mendes (eds.), Dynamics and Stochastic Processes, Springer, Berlin (1990), pp. 242–250. Yu. S. Kivshar, B. Rödelsperger, and H. Benner, “Suppression of chaos by nonresonant parametric perturbations,” Phys. Rev. E, 49, 319–324 (1994). A. B. Corbet, “Suppression of chaos in 1D maps,” Phys. Lett. A, 130, No. 4-5, 267–270 (1988). E. A. Jackson and A. Hübler, “Periodic entrainment of chaotic logistic map dynamics,” Physica D, 44, 407–420 (1990). K. Pyragas, “Stabilization of unstable periodic and aperiodic orbits of chaotic systems by self-controlling feedback,” Z. Naturforsch. A, 48, 629–632 (1993). G. I. Dykman, P. S. Landa, and Yu. I. Neimark, “Synchronization of chaotic oscillations by external force,” Chaos, Solitons, and Fractals, 1, No. 4, 339–353. E. Ott, C. Grebogi, and J. A. Jorke, “Controlling chaos,” Phys. Rev. Lett., 64, 1196–1199 (1990). F. J. Romeiras, E. Ott, C. Grebogi, and W. P. Dayawansa, “Controlling chaotic dynamical systems,” Physica D, 58, 165–192 (1992). A. Yu. Loskutov and S. D. Rybalko, “Parametric perturbations and suppression of chaos in n-dimensional maps,” Preprint ICTP IC/94/347, Trieste, Italy (1994). A. Yu. Loskutov, “Non-feedback controlling complex behaviour: an analytic approach,” in: J. Awreicewicz (ed.), Nonlinear Dynamics: New Theoretical and Applied Results, Springer, Berlin (1995), pp. 125–150. A. Yu. Loskutov and A. I. Shishmarev, “A property of the family of quadratic maps in the presence of parametric perturbation,” UMN, 48, No. 1, 169–170 (1993). A. N. Derjugin, A. Yu. Loskutov, and V. M. Tereshko, “Inducing stable periodic dynamics by parametric perturbations,” Fractals, Solitons, and Chaos, 7, No. 10, 1–13 (1996). J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3d ed., Springer, Berlin (1990). P. Berge, Y. Pomeau, and C. Vidal, Order within Chaos [Russian translation], Mir, Moscow (1991). A. N. Sharkovskii, Yu. L. Maistrenko, and E. Yu. Romanenko, Difference Equations and Their Applications [in Russian], Naukova Dumka, Kiev (1986). M. Yakobson, “Ergodic theory of one-dimensional maps,” in: Dynamical Systems, Vol. 2, VINITI, Moscow (1985). L. Mora and M. Viana, “Abundance of strange attractors,” Acta Math., 171, 1–71. S. Fraser and R. Kapral, “Universal vector scaling in one-dimensional maps,” Phys. Rev. A, 30, 1017 (1984). M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker, “Quasiperiodicity in dissipative systems. A renormalization group analysis,” Physica D, 5, 370–386 (1982). P. Bak, T. Bohr, and M. H. Jensen, Directions in Chaos II, World Scientific, Singapore (1988). M. Dolnik, I. Schreiber, and M. Marek, “Dynamic regimes in a periodically forced reaction cell with oscillatory chemical reaction,” Physica D, 21, 78 (1986). P. Mandel and P. Kapral, “Subharmonic and chaotic bifurcation structure in optical bistability,” Opt. Commun., 47, 151 (1983). L. Glass and M. Mackey, From Clocks to Chaos: Rhythms of Life [Russian translation], Mir, Moscow (1991). W.-Z. Zeng and L. Glass, “Symbolic dynamics and skeletons of circle maps,” Physica D, 40, 218–234 (1989). P. L. Boyland, “Bifurcation of circle maps: Arnold tongues, bistability, and rotation intervals,” Commun. Math. Phys., 106, 353 (1986). J. Belair and L. Glass, “Universality and self-similarity in the bifurcations of circle maps,” Physica D, 16, 143–154 (1985).