Tối ưu hóa tham số và phân tích hồi quy đa biến cho kỹ thuật đóng cọc đất sử dụng các phương pháp số

Springer Science and Business Media LLC - Tập 38 - Trang 3505-3523 - 2020
Animesh Sharma1, R. Ramkrishnan2
1Larsen and Toubro Construction – EDRC, Chennai, India
2Department of Civil Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India

Tóm tắt

Kỹ thuật đóng cọc đất đã trở thành một phương pháp chính trong việc giữ đất và ổn định độ dốc. Nghiên cứu hiện tại thực hiện tối ưu hóa tham số tiềm năng trong kỹ thuật đóng cọc đất bằng cách xem xét tương tác giữa cọc và phân tích ngược sức kéo của cọc sử dụng Phân tích phần tử hữu hạn với PLAXIS 2D. Kết quả cho thấy sức kéo của cọc phụ thuộc vào độ sâu, từ đó cung cấp phương hướng tiềm năng cho việc tối ưu hóa mô hình chiều dài cọc đất. Xu hướng kết quả quan sát đã được xác nhận thêm bằng Phân tích Cân bằng Giới hạn. Hơn nữa, phân tích động đã được thực hiện để đảm bảo sự ổn định động đất xem xét mô hình chiều dài cọc giảm theo các hướng dẫn của FHWA và các phương pháp số như phương pháp phần tử hữu hạn và phương pháp cân bằng giới hạn. Các kết quả cho thấy rằng xu hướng quan sát với các mô hình chiều dài cọc giảm đã gây ra sự gia tăng nhẹ trong các điều kiện sử dụng như biến dạng ngang, nhưng các kết quả được quan sát vẫn nằm trong giới hạn cho phép trong trạng thái giới hạn cuối cùng. Ngoài phân tích số, một phân tích hồi quy số đã được thực hiện để phát triển mối tương quan giữa các tham số địa kỹ thuật, các mô hình chiều dài cọc và các điều kiện giới hạn.

Từ khóa

#Kỹ thuật đóng cọc đất #Tối ưu hóa tham số #Phân tích phần tử hữu hạn #Phân tích động #Cân bằng giới hạn #Hồi quy đa biến

Tài liệu tham khảo

Abdallah AEZM (2010) Design charts for soil nailing. Master’s Thesis, Benha University Ardakani A, Bayat M, Javanmard M (2014) Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models. Geomech Eng 6(4):391–401. https://doi.org/10.12989/GAE.2014.6.4.391 Aryal K, Sandven R, Nordal S (2006) Slope stability evaluation by limit equilibrium and finite element methods. In; Proceedings of the 16th international conference on soil mechanics and geotechnical engineering Babu GLS, Singh VP (2008) Numerical analysis of performance of soil nail walls in seismic conditions. ISET J Earthq Technol 45:496 Babu GLS, Singh VP (2009a) Stabilization of vertical cut using soil nailing. Plaxis Pract 22:6–9 Babu GLS, Singh VP (2009b) Appraisal of soil nailing design. Indian Geotech J 39(1):81–95 Barar Pirooz SE, Qing Liu PE (2010) Times-history finite element dynamic analysis—soil nail wall—San Manuel Casino—Highland, California. Fifth In: International conference on recent advances in geotechnical earthquake engineering and soil dynamics Cheung RWM, Shum KW (2012) Review of the approach for estimation of pullout resistance of soil nails. GEO Report 264 CIRIA C580 (2003) Embedded retaining walls—guidance for economic design. London Deng D, Li L, Zhao L (2017) Limit equilibrium analysis for stability of soil nailed slope and optimum design of soil nailing parameters. J Cent South Univ 24:2496–2503 Dewedree S, Jusoh SN (2019) Slope stability analysis under different soil nailing parameters using the SLOPE/W software. J Phys: Conf Ser 1174:012008 Fan C-C, Luo J-H (2008) Numerical study on the optimum layout of soil–nailed slopes. Comput Geotech 35(4):585–599 FHWA (2003) Soil nail walls, geotechnical engineering circular no. 7, Report no. FHWA0-IF-03-017, Federal Highway Administration GEO Report No. 197 (2005) Effects of inclination, length pattern and bending stiffness of soil nails on behaviour of nailed structures GEO Report No. 264 (2009) Review of the approach for estimation of pull-out resistance of soil nails GEO5 v19. (2015) User’s manual. Fine software company, Czech Republic Gouw T-L (2014) Common mistakes on the application of PLAXIS 2D in analyzing excavation problems. Int J Appl Eng Res 9(21):8291–8311 Gurpersaud N, Vanapalli SK, Sivathayalan S (2011) Pull-out capacity of soil nails in unsaturated soils. In: Pan-AM CGS geotechnical conference, pp 1–8 Hitha S, Vijayshree S, Animesh S, Ramkrishnan R (2019) Regression analysis of soil nailing parameters using finite element and limit equilibrium methods. Aust Geomech J 54:137–147 Hong C-Y, Liu Z-X, Zhang Y-F, Zhang M-X, Borana L (2017) Influence of critical parameters on the peak pullout resistance of soil nails under different testing conditions. Int. J. Geosynth. Ground Eng. 3:19 Isaka BLA, Madushanka BC, Priyankara NH (2016) Analysis of pullout resistance of soil-nailing in lateritic soil. In Advances in civil and environmental engineering practices, for sustainable development (ACEPS), Challenges and solutions in geotechnical engineering, University of Ruhuna, Galle Joon SH, Lee I-M, Lee S-W (2014) Optimization of soil nailing design considering three failure modes. KSCE J Civ Eng 18(2):488–496 Julusic P, Zlender B (2013) Soil–nail wall stability analysis using Anfis. Acta Geotech Slov 10:61–73 Kumar A, Mittal H, Sachdeva R, Kumar A (2012) Indian strong motion instrumentation network. Seismol Res Lett 83:59–66. https://doi.org/10.1785/gssrl.83.1.59 Lima AP, Gerscovich DM, Sayão ASFJ (2003) Deformability analysis of nailed soil slopes. In: 12th Panamerican conference for soil mechanics and geotechnical engineering, pp 2127–2132 Lin H, Xiong W, Caoa P (2013) Stability of soil nailed slope using strength reduction method. Eur J Environ Civ Eng 17(9):872–885 Lin P, Bathurst RJ, Liu J (2015) Evaluation of prediction accuracy of ultimate bond strength of soil nails by the effective stress method. GeoQuebec 2015 Liu J, Shang K, Wu X (2015) Stability analysis and performance of soil-nailing retaining system of excavation during construction period. J Perform Constr Fac, ASCE. ISSN 0887-3828/C4014002(9) Ma L, Shen SL, Du YJ, Sun WJ (2011) A case study of the behavior of soil–nail supported deep mixed wall in the soft deposit of Shanghai. Lowl Technol Int 13(2):1–8 Manjularani P, Govindaraju L, Katageri BG (2014) Soil nail wall for deep excavations and its performance under seismic conditions. IGC Kakinada, pp 438–444 Moniuddin MdK, Manjularani P, Govindaraju L (2016) Seismic analysis of soil nail performance in deep excavation. Int J Geo-Eng 7:16 NCHRP Report 507 (2004) Load and resistance factor design (LRFD) for deep foundations Paikowsky SG (2004) Load and resistance factor design (LRFD) for deep foundations, NCHRP Report, vol 507. Transportation Research Board Patra CR, Basudhar P (2005) Optimum design of nailed soil slopes. Geotech Geol Eng 23(3):273–296 Phear A, Dew C, Ozsoy B, Wharmby NJ, Judge J, Barley AD (2005) Soil nailing-best practice guidance (No. C637) Plaxis Reference Manuals (2002) PLAXIS 2D: reference manual, version 8. Plaxis BV, Delft Pradhan B, Yue ZQ, Junaideen SM, Lee CF (2006) Soil–nail pullout interaction in loose fill materials. Int J Geomech 6(4):238–247 Ramkrishnan R, Sruthy MR, Animesh Sharma, Karthik V (2018a) Effect of random inclusion of sisal fibres on strength behavior and slope stability of fine grained soils. Mater Today Proc 5(11):25313–25322 Ramkrishnan R, Karthik V, Sruthy MR, Sharma A (2018b) Soil reinforcement and slope stabilization using natural jute fibres. In: Civil infrastructures confronting severe weathers and climate changes conference, pp 130–143 Rawat P, Chaterjee K (2018) Seismic stability analysis of soil slopes using soil nails. Geotech Earthq Eng Soil Dyn V GSP 293:79–87 Rawat S, Gupta AK (2016) Analysis of a nailed soil slope using limit equilibrium and finite element methods. Int J Geosynth Ground Eng 2:34 Recommendations CLOUTERRE 1991 (1991) Soil nailing recommendations. French National Research Project CLOUTERRE Rotte Veerabhadra M, Vishwanadham VS (2013) Influence of nail inclination and face material type on soil nail slopes. Inst Civ Eng 166(2):86–107 Seo H, Pelecanos L, Kwon Y-S, Lee I-M (2017) Net load-displacement estimation in soil nailing pullout tests. Proc Inst Civ Eng Geotech Eng 170(6):534–547 Sharma M, Samanta M, Punetha P (2019a) Experimental investigation and modeling of pullout response of soil nails in cohesionless medium. Int J Geomech 19(3):04019002 Sharma A, Raju PT, Sreedhar V, Mahiyar H (2019b) Slope stability analysis of steep-reinforced soil slopes using finite element method. Geotech Appl 13:163–171 Sharma M, Samanta M, Sarkar S (2019c) Soil nailing: an effective slope stabilization technique. In: Pradhan SP, Vishal V, Singh TN (eds) Landslides: theory, practice and modelling, advances in natural and technological hazards research, vol 50. Springer, Cham Shaw-Shong L (2005) Soil nailing for slope strengthening. Geotechnical Engineering, Gue & Partners Sdn Bhd, Kuala Lumpur, Malaysia, 30–31 Shiu YK, Chang GWK (2006) Effects of inclination, length pattern and bending stiffness of soil nails on behaviour of nailed structures. GEO Report 197, Geotechnical Engineering Office, Civil Engineering and Development Department Singh VP, Babu GLS (2010) 2D numerical simulations of soil nail walls. Geotech Geol Eng 28(4):299–309 Soil Nail Walls Reference Manual Publication No. FHWA-NHI-14-007 FHWA GEC 007 February (2015) Tei K, Talyor N, Milligan GWE (1998) Centrifugal model tests of nailed soil slopes. Soils Found 38(2):165–177 Yin J-H, Su L-J, Cheung RWM, Shiu Y-K, Tang C (2009) The influence of grouting pressure on the pullout resistance of soil nails in compacted completely decomposed granite fill. Geotechnique 59(2):103–113 Zaki M, Faiz M, Amiza AW, Ahmad W, Afizah A, Teoh KY (2015) Analysis of soil nailing under earthquake loading in malaysia using finite element method. Appl Mech Mater 695:526–529 Zhang SL, Lu FT (2015) Numerical analysis of composite soil nailing wall. In: Advanced materials research, vol 1065. Trans Tech Publications Ltd, pp 48–52 Zhou W-H, Yin J-H, Hong C-Y (2011) Finite element modelling of pullout testing on a soil nail in a pullout box under different overburden and grouting pressures. Can Geotech J 48:557–567