Parametric FEA modelling of offshore wind turbine support structures: Towards scaling-up and CAPEX reduction
Tài liệu tham khảo
RenewableUK, Wind Energy in the UK. State of the Industry Report Summary 2015, (2015) 1–43. http://www.renewableuk.com/en/publications/guides.cfm.
Energy Technologies Institute, 2015
Carbon Trust, Floating Offshore Wind : Market and Technology Review, 2015. http://www.carbontrust.com/media/670664/floating-offshore-wind-market-technology-review.pdf.
EWEA Business Intelligence, Aiming high: Rewarding Ambition in Wind Energy, n.d. doi:10.1021/nn700402d.
A. Ho, A. Mbistrova, G. Corbetta, EWEA. The European Offshore Wind Industry: Key Trends and Statistics 2015, European Wind Energy Association, n.d. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2014.pdf.
Bhattacharya, 2014, Challenges in design of foundations for offshore wind turbines, IET Eng. Technol. Ref., 1
Damgaard, 2014, Effects of soil-structure interaction on real time dynamic response of offshore wind turbines on monopiles, Eng. Struct., 75, 10.1016/j.engstruct.2014.06.006
DNV (Det Norske Veritas), DNV-OS-J101 Design of Offshore Wind Turbine Structures, 2014.
RenewableUK, Offshore Wind Energy in the UK, n.d.
A.J. Kolios, M. Collu, A. Chahardehi, F.P. Brennan, M.H. Patel, A Multi-Criteria Decision Making Method to Compare Support Structures for Offshore Win d Turbines, in: EWEC 2010 Conf., Warsow, Poland, n.d.
Levitt, 2011, Pricing offshore wind power, Energy Policy., 39, 6408, 10.1016/j.enpol.2011.07.044
C. Moné, A. Smith, B. Maples, M. Hand, 2013 Cost of Wind Energy Review, Nrel/Tp-5000-63267. (2013) NREL/TP-5000-63267.
Kaiser, 2012
S. Koch, G. Andersson, Assessment of revenue potentials of ancillary service provision by flexible unit portfolios, 2012.
Härtel, 2016, Cost assessment of storage options in a region with a high share of network congestions, J. Energy Storage., 8, 358, 10.1016/j.est.2016.05.010
Giahi, 2016, Dehkordi, Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation, Renew. Energy., 97, 162, 10.1016/j.renene.2016.05.059
API Recommended Practice 2GEO/ISO 19901–4, Geotechnical and Foundation Design Considerations, n.d.
DET NORSKE VERITAS AS, DNV RP-C202 Buckling Strength of Shells, 2013.
DNV, Risk based inspection of o shore topsides static mechanical equipment. RP-G101, 2009.
Shi, 2013, A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea, Renew. Energy., 58, 50, 10.1016/j.renene.2013.03.010
Densit, Ultra High performance grout - Ducorit Data Sheet, (n.d.). http://www.densit.com/Files/Billeder/Densit_v2/Pdf files/renewable/pro_ducorit_itw-uk.pdf (accessed February 10, 2016).
Winkler, 1867
Koukoura, 2015, Identification of support structure damping of a full scale offshore wind turbine in normal operation, Renew. Energy., 81, 882, 10.1016/j.renene.2015.03.079
Kezdi, 1974
Chen, 1999
Gerolymos, 2006, Winkler model for lateral response of rigid caisson foundations in linear soil, Soil Dyn. Earthq. Eng., 26, 347, 10.1016/j.soildyn.2005.12.003
Heidari, 2014, Generalized cyclic p–y curve modeling for analysis of laterally loaded piles, Soil Dyn. Earthq. Eng., 63, 138, 10.1016/j.soildyn.2014.04.001
K. Abdel-Rahman, M. Achmus, Finite element modelling of horizontally loaded monopile foundations for offshore wind energy converters in Germany, Hannover, 2005.
H. Matlock, Correlations for Design of Laterally Loaded Piles in soft Clay, in: 2nd Offshore Technol. Conf., Houston, Texas, USA, 1970.
Carswell, 2016, Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay, Renew. Energy., 97, 319, 10.1016/j.renene.2016.05.080
Rajashree, 1996, Degradation model for one-way cyclic lateral load on piles in soft clay, Comput. Geotech., 19, 289, 10.1016/S0266-352X(96)00008-0
International Electrotechnical Commission, IEC 61400–1 International Satandard. Wind turbines - Part 1: Design Requirements, Geneva, Switzerland, 2005. doi:10.5594/J09750.
International Electrotechnical Commission, International Standard IEC 61400–3 Wind turbines - Part 3: Design requirements for offshore wind turbines, 2009.
Palutikof, 1999, A review of methods to calculate extreme wind speeds, Meteorol. Appl., 6, 119, 10.1017/S1350482799001103
Sarpkaya, 2010
DNV (Det Norske Veritas), DNV−OS−J101 Design of Offshore Wind Turbine Structures, n.d.
Carswell, 2015, Foundation damping and the dynamics of offshore wind turbine monopiles, Renew. Energy., 80, 724, 10.1016/j.renene.2015.02.058
Siemens, SWT-3.6-107 Wind Turbine, 2010. http://www.energy.siemens.com/us/pool/hq/power-generation/renewables/wind-power/wind turbines/E50001-W310-A103-V6-4A00_WS_SWT_3_6_107_US.pdf.
Passon, 2015, Damage equivalent wind e wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines, Renew. Energy., 81, 723, 10.1016/j.renene.2015.03.070
LaNier, 2005
Brennan, 2014, Fatigue design of offshore steel monopile wind substructures, Proc. Inst. Civ. Eng. - Energy., 167, 1
Det Norske Veritas, Fatigue Design of Offshore Steel Structures, 2005. ftp://128.84.241.91/tmp/MSE-4020/Fatigue-Design-Offshore.pdf.
Adedipe, 2016, Review of Corrosion Fatigue in Offshore Structures: Present Status and Challenges in the Offshore Wind Sector, Renew. Sustain. Energy Rev., 61, 141, 10.1016/j.rser.2016.02.017
Novoselac, 2012, Linear and Nonlinear Buckling and Post Buckling Analysis of a Bar With the Influence of Imperfections, Teh. Vjesn., 19, 695
Życzkowsky, 2005, Post-buckling analysis of non-prismatic columns under general behaviour of loading, Int. J. Non. Linear. Mech., 40, 445, 10.1016/j.ijnonlinmec.2004.05.014
European Standard, EN 1993-1-1 Eurocode 3: Design of steel structures - Part 1–1: General rules and rules for buildings, 2005.
European Standard, EN 1993-1-6 Eurocode 3 - Design of steel structures - Part 1–6: Strength and stability of shell structures, 2007.
Martinez Luengo, 2016, Structural Health Monitoring of Offshore Wind Turbines: A review through the Statistical Pattern Recognition Paradigm, Renew. Sustain. Energy Rev., 64, 91, 10.1016/j.rser.2016.05.085
Weijtjens, 2016, Foundation structural health monitoring of an offshore wind turbine — a full-scale case study, Struct. Heal. Monit., 15, 389, 10.1177/1475921715586624
C. Devriendt, F. Magalhães, W. Weijtjens, G. De Sitter, Á. Cunha, P. Guillaume, Automatic identification of the modal parameters of an offshore wind turbine using state-of-the-art operational modal analysis, in: 5th Int. Oper. Modal Anal. Conf., Guimarães, Portugal, n.d.: pp. 1–12.
Devriendt, 2014, Structural Health Monitoring of offshore wind turbines using automated operational modal analysis, Struct. Heal. Monit., 13, 644, 10.1177/1475921714556568
Stahlmann, 2014, Numerical and Experimental Modeling of Scour at Tripod Foundations for Offshore Wind Turbines, 1, 1019
D. Rudolph, K. Bos, A. Luijendijk, K. Rietema, J. Out, Scour around offshore structures, analysis of field measurements, in: Proc 2nd Int Conf Scour Eros., Meritus Mandarin, Singapore, 2004: p. 400–407.
Rambabu, 2003, Current-induced scour around a vertical pile in cohesive soil, Ocean Eng., 30, 893, 10.1016/S0029-8018(02)00063-X
Chen, 2014, Methods for predicting seabed scour around marine current turbine, Renew. Sustain. Energy Rev., 29, 683, 10.1016/j.rser.2013.08.105
Mutlu, 2007, Sumer, Mathematical modelling of scour: A review, J. Hydraul. Res., 45, 723, 10.1080/00221686.2007.9521811
Yoshida, 2006, Wind Turbine Tower Optimization Method Using a Genetic Algorithm, Wind Eng., 30, 453, 10.1260/030952406779994150
Daniel Stratton, 2016, Martino, F.M. Pasquali, K. Lewis, J.F. Hall, A Design Framework for Optimizing the Mechanical Performance, Cost, and Environmental Impact of a Wind Turbine Tower, J. Sol. Energy Eng., 138
Nguyen, 2015, Numerical evaluation for vibration-based damage detection in wind turbine tower structure, Wind Struct, 21, 657, 10.12989/was.2015.21.6.657
Uys, 2007, Optimisation of a steel tower for a wind turbine structure, Eng. Struct., 29, 1337, 10.1016/j.engstruct.2006.08.011
Negm, 2000, Structural design optimization of wind turbine towers, Comput. Struct., 74, 649, 10.1016/S0045-7949(99)00079-6
Zaaijer, 2006, Foundation modelling to assess dynamic behaviour of offshore wind turbines, Appl. Ocean Res., 28, 45, 10.1016/j.apor.2006.03.004
W. Sahasakkul, H. Nguyen, D. Ph, A. Sari, D. Ph, An improved methodology on design and analysis of offshore wind turbines supported by monopiles, in: Offshore Technol. Conf., Houston, Texas, USA, n.d. doi:10.4043/27181-MS.
Weijtjens, 2015, Foundation structural health monitoring of an offshore wind turbine: a full-scale case study, Struct. Heal. Monit.
Negro, 2014, Uncertainties in the design of support structures and foundations for offshore wind turbines, Renew. Energy., 63, 125, 10.1016/j.renene.2013.08.041
P. de Schoesitter, S. Audenaert, L. Baelus, A. Bolle, A. Brown, L. Das Neves, T. Ferradosa, P. Haerens, F.T. Pinto, P. Troch, R. Whitehouse, Feasibility of a dynamically stable rock armour layer scour, in: Proc. ASME 2014 33rd Int. Conf. Ocean. Offshore Arct. Eng. OMAE2014, June 8–13, 2014, San Francisco, California, USA, 2014: pp. 1–9.
Martinez Luengo, 2015, Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review, Energies, 8, 8339, 10.3390/en8088339