Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các yếu tố điều khiển và ảnh hưởng đến quá trình kết tinh và hình thái của perovskite halide hữu cơ-kim loại
Tóm tắt
Bài đánh giá này thảo luận về các tham số khác nhau ảnh hưởng và kiểm soát quá trình kết tinh của perovskite halide hữu cơ-kim loại. Hình thái của perovskite có tác động đến hiệu suất quang điện, là một yếu tố quan trọng. Hơn nữa, nó có ảnh hưởng mạnh mẽ đến độ ổn định của perovskite, điều này có tầm quan trọng lớn cho việc sử dụng perovskite hữu cơ-kim loại trong các ứng dụng khác nhau sau này. Trong bài đánh giá này, chúng tôi đã tập hợp một số nghiên cứu điều tra mô tả các tham số chính có ảnh hưởng đáng kể đến quá trình kết tinh của perovskite, chẳng hạn như quá trình ủ, dung môi tiền chất, điều trị chống dung môi, và các chất phụ gia cho các dung dịch iteite.
Từ khóa
#perovskite #kết tinh #hình thái #hiệu suất quang điện #độ ổn định #dung môi #chất phụ giaTài liệu tham khảo
Aharon S, Dymshits A, Rotem A, Etgar L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9171–9178
Huang L, Hu Z, Yue G, Liu J, Cui X, Zhang J, Zhu Y. CH3NH3PbI3-xClx films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17(34): 22015–22022
Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Advanced Functional Materials, 2014, 24(21): 3250–3258
Cohen B E, Gamliel S, Etgar L. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Materials, 2014, 2(8): 081502
Chiang C, Tseng Z L, Wu C G. Planar heterojunction perovskite/ PC71BM solar cells with enhanced open-circuit voltage via a(2/1)- step spin-coating process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(38): 15897–15903
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by inter diffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619
Xiao J, Yang Y, Xu X, Shi J, Zhu L, Lv S, Wu H, Luo Y, Li D, Meng Q. Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3(10): 5289–5293
Huang L, Hu Z, Xu J, Zhang K, Zhang J, Zhu Y. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 141: 377–382
Jeon Y J, Lee S, Kang R, Kim J E, Yeo J S, Lee S H, Kim S S, Yun J M, Kim D Y. Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4: 6953
Bao X, Wang Y, Zhu Q, Wang N, Zhu D, Wang J, Yang A, Yang R. Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 2015, 297: 53e58
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619
Tao C, Neutzner S, Colella L, Marras S, Kandada A R S, Gandini M, De Bastiani M, Pace G, Manna L, Caironi M, Bertarelli C, Petrozza A. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy & Environmental Science, 2015, 8(8): 2365–2370
Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C. Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications (Cambridge), 2014, 50(99): 15819–15822
You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, ChangWH, Li G, Yang Y. Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105 (18): 183902
Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y. Mixed solvents for the optimization of morphology in solutionprocessed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6(12): 6679–6683
Nam J J, Jun H N, Young C K, Woon SY, Ryu S, Seok S. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
Lian J, Wang Q, Yuan Y, Shao Y, Huang J. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3: 9146
Cai B, Zhang W H, Qiu J. Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chinese Journal of Catalysis, 2015, 36(8): 1183–1190
Li W, Fan J, Li J, Mai Y, Wang L. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. Journal of the American Chemical Society, 2015, 137(32): 10399–10405
Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H, Kanatzidis M G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452
Lv M, Dong X, Fang X, Lin B, Zhang S, Ding J, Yuan N. A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices. RSC Advances, 2015, 5(26): 20521–20529
Wu Y, Chen W, Yue Y, Liu J, Bi E, Yang X, Islam A, Han L. Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Applied Materials & Interfaces, 2015, 7(37): 20707–20713
Rong Y, Tang Z, Zhao Y, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M, Yao Y. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7(24): 10595–10599
Lin K F, Chang S H, Wang K H, Cheng H M, Chiu K Y, Lee K M, Chen S H, Wu C G. Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Solar Energy Materials and Solar Cells, 2015, 141: 309–314
Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray- Weale A, Bach U, Cheng Y B, Spiccia L. A fast depositioncrystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie, 2014, 53(37): 9898–9903
Zheng X, Chen B, Wu C, Priya S. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis. Nano Energy, 2015, 17: 269–278
Cohen B E, Aharon S, Dymshits A, Etgar L. Impact of anti-solvent treatment on carrier density in efficient hole conductor free perovskite based solar cells. Journal of Physical Chemistry, 2016, 120(1): 142–147
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982
Yang L, Wang J, Leung WWF. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells. ACS Applied Materials & Interfaces, 2015, 7(27): 14614–14619
Wang F, Yu H, Xu H, Zhao N. HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Advanced Functional Materials, 2015, 25(7): 1120–1126
Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Grätzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ?-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711
Carnie MJ, Charbonneau C, Davies ML, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A. A one-step low temperature processing route for organolead halide perovskite solar cells. Chemical Communications (Cambridge), 2013, 49(72): 7893–7895
Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K. Additive enhanced crystallization of solutionprocessed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials, 2014, 26(22): 3748–3754
Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. Journal of Physical Chemistry C, 2014, 118(18): 9412–9418
Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Applied Materials & Interfaces, 2015, 7(8): 4955–4961
Huang Y C, Tsao C S, Cho Y J, Chen K C, Chiang K M, Hsiao S Y, Chen C W, Su C J, Jeng U S, Lin H W. Insight into evolution, processing and performance of multilength-scale structures in planar heterojunction perovskite solar cells. Scientific Reports, 2015, 5:13657
Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433
Chueh C C, Liao C Y, Zuo F, Williams S T, Liang P W, Jen A K Y. The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9058–9062
Zhang H, Mao J, He H, Zhang D, Zhu H L, Xie F, Wong K S, Grätzel M, Choy W C H. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Advanced Energy Materials, 2015, 5(23): 1501354