Parameters of the Infrasound Signal Generated by a Meteoroid over Indonesia on October 8, 2009
Tóm tắt
The basic parameters (delay time, celerity, duration, oscillation period, and amplitude) of the infrasound signal recorded by 17 stations are statistically analyzed as a function of the horizontal distance between the Indonesian superbolide total radiated energy and the infrasound station location. Fitting dependences of signal parameters on distance are given. Correlation diagrams are constructed and analyzed. The basic parameters of the meteoroid, the corrected value of the infrasound signal celerity, and the average tropospheric-stratospheric wind velocity are estimated.
Từ khóa
Tài liệu tham khảo
Catastrophic Events Caused by Cosmic Objects, Ed. by V. V. Adushkin and I. V. Nemchinov (Akademkniga, Moscow, 2005; Springer-Verlag, Dordrecht, 2007) [in Russian].
L. F. Chernogor, “Plasma, electromagnetic and acoustic effects of meteorite “Chelyabinsk”,” Inzh. Fiz. 8, 23–40 (2013) [in Russian].
L. F. Chernogor, “The physical effects associated with Chelyabinsk meteorite’s passage,” Dop. Nats. Akad. Nauk Ukr., No. 10, 97–104 (2013) [in Russian].
L. F. Chernogor, “Chelyabinsk meteoroid’s acoustic effects,” Radiofiz. Radioastron. 22 (1), 53–66 (2017) [in Russian].
L. F. Chernogor and A. I. Lyashchuk, “Infrasound observations of the bolide explosion over Romania on January 7, 2015,” Kinematics Phys. Celestial Bodies 33, 276–290 (2017).
L. F. Chernogor and A. I. Lyashchuk, “Parameters of infrasonic waves generated by the Chelyabinsk meteoroid on February 15, 2013,” Kinematics Phys. Celestial Bodies 33, 79–87 (2017).
P. Brown, R. E. Spalding, D. O. ReVelle, and E. Tagliaferri, “The flux of small near-Earth objects colliding with the Earth,” Nature 420, 294–296 (2002).
Y. Cansi, “An automatic seismic event processing for detection and location; the P.M.C.C. Method,” Geophys. Res. Lett. 22, 1021–1024 (1995). doi 10.1029/95GL00468
J. M. Harris and C. J. Young, “MatSeis: A seismic graphical user interface and toolbox for MATLAB,” Seismol. Res. Lett. 68, 307–308 (1997).
O. P. Popova, P. Jenniskens, V. Emel’yanenko, et al., “Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342, 1069–1073 (2013).
D. O. ReVelle, “Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves,” Ann. Acad. Sci. 822, 284–302 (1997).
E. A. Silber, A. Le Pichon, and P. G. Brown, “Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009,” Geophys. Res. Lett. 38. L12201 (2011). doi 10.1029/2011GL047633
E. A. Silber, A. L. Pichon, and P. G. Brown, “Infrasonic detection of a large bolide over South Sulawesi, Indonesia on October 8, 2009: Preliminary results,” in Meteoroids: The Smallest Solar System Bodies, (Proc. Meteoroids 2010 Conf., Breckenridge, Colorado, USA, May 24–28, 2010) (NASA Marshall Space Flight Center, Huntsville, AL, 2011), pp. 255–266.
C. J. Young, E. P. Chael, and B. J. Merchant, “Version 1.7 of MatSeis and the GNEM R &E regional seismic analysis tools,” in Proc. 24th Seismic Research Review, Ponte Vedra Beach, FL, Sept. 17–19, 2002 (Office of Scientific and Technical Information, U.S. Department of Energy, Oak Ridge, TN, 2002).