Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp tham số hóa chức năng tạo ra phun nước biển với độ che phủ bọt trắng
Tóm tắt
Giọt phun nước biển được tạo ra bởi sóng vỡ trên bề mặt biển, và chúng biến đổi việc truyền năng lượng giữa bầu khí quyển và đại dương. Chức năng tạo ra phun nước biển (SSGF) thường được coi là một hàm của bán kính ban đầu của các giọt phun nước và tốc độ gió. Tuy nhiên, sóng đại dương luôn tồn tại tại giao diện không khí - biển, vì vậy việc chỉ xem xét tác động của gió bề mặt biển là không hợp lý mà không quan tâm đến tác động của sóng đại dương. Độ che phủ bọt trắng là một tham số đặc trưng quan trọng của các sóng vỡ, và các nhà nghiên cứu tin rằng tham số này liên quan đến cả trạng thái sóng và tốc độ gió. Trong bài viết này, SSGF được tham số hóa bằng độ che phủ bọt trắng, và một SSGF mới mô tả các bán kính giọt khác nhau được tích hợp một cách hữu cơ dựa trên tham số độ che phủ bọt trắng. Sau đó, với mối quan hệ giữa độ che phủ bọt trắng và trạng thái sóng, ảnh hưởng của sóng đại dương đối với SSGF cho các trạng thái sóng khác nhau đã được phân tích bằng cách sử dụng dữ liệu quan sát trong phòng thí nghiệm. Kết quả cho thấy SSGF mới mà xem xét tác động của sóng có thể mô tả một cách hợp lý quy trình tạo ra giọt dưới các điều kiện trạng thái sóng khác nhau.
Từ khóa
#phun nước biển #chức năng tạo ra phun nước biển #độ che phủ bọt trắng #sóng đại dương #trạng thái sóngTài liệu tham khảo
Andreas E L. 1992. Sea spray and the turbulent air-sea heat fluxes. Journal of Geophysical Research: Oceans, 97(C7): 11429–11441, doi: https://doi.org/10.1029/92JC00876
Andreas E L. 1998. A new sea spray generation function for wind speeds up to 32 m·s−1. Journal of Physical Oceanography, 28(11): 2175–2184, doi: https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2
Andreas E L. 2002. A review of the sea spray generation function for the open ocean. In: Perrie W, ed. Atmosphere-Ocean Interactions. Southampton: WIT Press, 1–46
Andreas E L. 2004. Spray stress revisited. Journal of Physical Oceanography, 34(6): 1429–1440, doi: https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2
Andreas E L, Edson J B, Monahan E C, et al. 1995. The spray contribution to net evaporation from the sea: a review of recent progress. Boundary-Layer Meteorology, 72(1–2): 3–52
Barthel S, Tegen I, Wolke R. 2019. Do new sea spray aerosol source functions improve the results of a regional aerosol model?. Atmospheric Environment, 198: 265–278, doi: https://doi.org/10.1016/j.at-mosenv.2018.10.016
Callaghan A H. 2013. An improved whitecap timescale for sea spray aerosol production flux modeling using the discrete whitecap method. Journal of Geophysical Research: Atmospheres, 118(17): 9997–10010, doi: https://doi.org/10.1002/jgrd.50768
Fairall C W, Banner M L, Peirson W L, et al. 2009. Investigation of the physical scaling of sea spray spume droplet production. Journal of Geophysical Research: Oceans, 114(C10): C10001, doi: https://doi.org/10.1029/2008JC004918
Fairall C W, Kepert J D, Holland G J. 1994. The effect of sea spray on surface energy transports over the ocean. The Global Atmosphere and Ocean System, 2: 121–142
Gong S L. 2003. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochemical Cycles, 17(4): 1097
Lafon C, Piazzola J, Forget P, et al. 2007. Whitecap coverage in coastal environment for steady and unsteady wave field conditions. Journal of Marine Systems, 66(1–4): 38–46
Laussac S, Piazzola J, Tedeschi G, et al. 2018. Development of a fetch dependent sea-spray source function using aerosol concentration measurements in the North-Western Mediterranean. Atmospheric Environment, 193: 177–189, doi: https://doi.org/10.1016/j.at-mosenv.2018.09.009
Lewis E R, Schwartz S E. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models-A Critical Review. Washington: American Geophysical Union
Ling S C, Saad A I, Kao T W. 1980. Microdroplets and transport of moisture from ocean. Journal of the Engineering Mechanics Division, 106(6): 1327–1339
Liu Bin, Guan Changlong, Xie Lian. 2012. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. Journal of Geophysical Research: Oceans, 117(C11): C00J22
Liu Bin, Liu Huiqing, Xie Lian, et al. 2011. A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Monthly Weather Review, 139(1): 132–152, doi: https://doi.org/10.1175/2010MWR3396.1
Monahan E C, Muircheartaigh I Ó. 1980. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. Journal of Physical Oceanography, 10(12): 2094–2099, doi:https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2
Monahan E C, Spiel D E, Davidson K L. 1986. A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan E C, Niocaill G M, eds. Oceanic Whitecaps. Dordrecht: Springer, 167–174.
Mueller J A, Veron F. 2009. A sea state-dependent spume generation function. Journal of Physical Oceanography, 39(9): 2363–2372, doi: https://doi.org/10.1175/2009JPO4113.1
Norris S J, Brooks I M, Moat B I, et al. 2013a. Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean. Ocean Science, 9(1): 133–145
Norris S J, Brooks I M, Salisbury D J. 2013b. A wave roughness Reynolds number parameterization of the sea spray source flux. Geophysical Research Letters, 40(16): 4415–4419
Ovadnevaite J, Manders A, De Leeuw G, et al. 2014. A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 14(4): 1837–1852, doi: https://doi.org/10.5194/acp-14-1837-2014
Ren Danqin, Hua Feng, Yang Yongzeng, et al. 2016. The improved model of estimating global whitecap coverage based on satellite data. Acta Oceanologica Sinica, 35(5): 66–72, doi: https://doi.org/10.1007/s13131-016-0848-3
Rizza U, Canepa E, Ricchi A, et al. 2018. Influence of wave state and sea spray on the roughness length: feedback on medicanes. Atmosphere, 9(8): 301, doi: https://doi.org/10.3390/atmos9080301
Shao Weizeng, Sheng Yexin, Li Huan, et al. 2018. Analysis of wave distribution simulated by WAVEWATCH-III model in typhoons passing Beibu Gulf, China. Atmosphere, 9(7): 265, doi: https://doi.org/10.3390/atmos9070265
Sheng Yexin, Shao Weizeng, Li Shuiqing, et al. 2019. Evaluation of typhoon waves simulated by WaveWatch-III model in shallow waters around Zhoushan islands. Journal of Ocean University of China, 18(2): 365–375, doi: https://doi.org/10.1007/s11802-019-3829-2
Shi Jian, Zhao Dongliang, Li Xunqiang, et al. 2009. New wave-dependent formulae for sea spray flux at air-sea interface. Journal of Hydrodynamics, 21(4): 573–581, doi: https://doi.org/10.1016/S1001-6058(08)60186-9
Shi Jian, Zhong Zhong, Li Ruijie, et al. 2011. Dependence of sea surface drag Coefficient on wind-wave Parameters. Acta Oceano-logica Sinica, 30(2): 14–24, doi: https://doi.org/10.1007/s13131-011-0101-z
Shi Jian, Zhong Zhong, Li Xunqiang, et al. 2016. The influence of wave state and sea spray on drag coefficient from low to high wind speeds. Journal of Ocean University of China, 15(1): 41–49, doi: https://doi.org/10.1007/s11802-016-2655-z
Smith M H, Park P M, Consterdine I E. 1993. Marine aerosol concentrations and estimated fluxes over the sea. Quarterly Journal of the Royal Meteorological Society, 119(512): 809–824, doi: https://doi.org/10.1002/qj.49711951211
Toba Y, Iida N, Kawamura H, et al. 1990. Wave dependence of sea-surface wind stress. Journal of Physical Oceanography, 20(5): 705–721, doi: https://doi.org/10.1175/1520-0485(1990)020<0705:WDOSSW>2.0.CO;2
Toba Y, Koga M. 1986. A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. In: Monahan E C, Niocaill G M, eds. Oceanic Whitecaps. Dordrecht: Springer, 37–47
Troitskaya Y, Kandaurov A, Ermakova O, et al. 2018. The “bag breakup” spume droplet generation mechanism at high winds. Part I: Spray generation function. Journal of Physical Oceanography, 48(9): 2167–2188, doi: https://doi.org/10.1175/JPO-D-17-0104.1
Veron F. 2015. Ocean spray. Annual Review of Fluid Mechanics, 47: 507–538, doi: https://doi.org/10.1146/annurev-fluid-010814-014651
Veron F, Hopkins C, Harrison E L, et al. 2012. Sea spray spume droplet production in high wind speeds. Geophysical Research Letters, 39(16): L16602
Wan Zhanhong, Zhu Jianbin, Sun Ke, et al. 2017. An integrated turbulent simulation and parameter modeling study on sea-spray dynamics and fluxes. Ocean Engineering, 130: 64–71, doi: https://doi.org/10.1016/j.oceaneng.2016.11.041
Woolf D K, Monahan E C, Spiel D E. 1988. Quantification of the marine aerosol produced by whitecaps. In: Proceedings of the Seventh Conference on Ocean-Atmosphere Interaction. Anaheim: American Meteorological Society, 182–185
Wu Jin. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research: Oceans, 87(C12): 9704–9706, doi: https://doi.org/10.1029/JC087iC12p09704
Wu Jin. 1993. Production of spume drops by the wind tearing of wave crests: the search for quantification. Journal of Geophysical Research: Oceans, 98(C10): 18221–18227, doi: https://doi.org/10.1029/93JC01834
Wu Jin, Murray J J, Lai R J. 1984. Production and distributions of sea spray. Journal of Geophysical Research: Oceans, 89(C5): 8163–8169, doi: https://doi.org/10.1029/JC089iC05p08163
Wu Lichuan, Rutgersson A, Sahlée E, et al. 2015. The impact of waves and sea spray on modelling storm track and development. Tellus A, 67(1): 27967, doi: https://doi.org/10.3402/tellusa.v67.27967
Zhao Dongliang, Toba Y. 2001. Dependence of whitecap coverage on wind and wind-wave properties. Journal of Oceanography, 57(5): 603–616, doi: https://doi.org/10.1023/A:1021215904955
Zhao Dongliang, Toba Y, Sugioka K I, et al. 2006. New sea spray generation function for spume droplets. Journal of Geophysical Research: Oceans, 111(C2): C02007