Parameterization of the discriminant set of a polynomial

Programming and Computer Software - Tập 42 Số 2 - Trang 65-76 - 2016
Alexander Borisovich Batkhin1
1Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Batkhin, A.B., Bruno A. D., and Varin V. P. Stability sets of multiparameter Hamiltonian systems, J. Appl. Math. Mech., 2012, vol. 76, no. 1. pp. 56–92.

Gryazina, E.N., Polyak, B.T., and Tremba, A.A., Ddecomposition technique state of-the-art, Autom. Remote Control, 2008, vol. 69, no. 12. pp. 1991–2026.

Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Spaceflight Dynamics), Moscow: Nauka, 1978.

Meiman, N.N., Some problems on the distributions of the zeroes of polynomials, Usp. Mat. Nauk, 1949, vol. 4, no. 6 (34), pp. 154–188.

Batkhin, A.B., Structure of discriminant set of real polynomial, Chebyshevskii Sb., 2015, vol. 16, no. 2. pp. 23–34. http://mimathnetru/rus/cheb/v16/i2/p23.

Batkhin, A.B., Parametrization of the discriminant set of a real polynomial, Preprint of the Keldysh Institute of Applied Mathematics, Moscow, 2015, no. 76. http://keldyshru/papers/2015/prep2015_76pdf.

Batkhin, A.B., On the structure of discriminant set of real polynomial, Int. Conf. on Polynomial Computer Algebra, Vassiliev, N.N., Ed., St. Petersburg, Russia: VVM, 2015, pp. 9–12.

Sushkevich, A.K., Osnovy vysshei algebry (Foundation of Higher Algebra), Moscow: OGIZ GITTL, 1941, 4th. ed.

Prasolov, V.V., Polynomials, Algorithms and Computations in Mathematics, vol. 10, Berlin: Springer, 2004.

Basu, S., Pollack, R., and Roy, M.-F., Algorithms in Real Algebraic Geometry, Algorithms and Computations in Mathematics, vol. 10, Berlin: Springer, 2006.

Uteshev, A.Yu. and Cherkasov, T.M., The search for the maximum of a polynomial, J. Symbolic Comput., 1998, vol. 25, no. 5, pp. 587–618.

Lickteig, T. and Roy, M.-F., Sylvester–Habicht sequences and fast Cauchy index computation, J. Symbolic Comput., 2001, vol. 31, pp. 315–341.

Gathen, J. von zur and Lücking, T., Subresultants revisited, Theor. Comput. Sci., 2003, vol. 297, pp. 199–239.

Jury, E.I., Inners and Stability of Dynamic Systems, New York: Wiley, 1974.

Cayley, A., Note sur la méthode d’limination de Bezout, J. Reine Angew. Math., 1855, vol. 53, pp. 366–367.

Gelfand I.M., Kapranov M.M., and Zelevinsky A.V., Discriminants, Resultants, and Multidimensional Determinants, Boston: Birkhäuser, 1994.

Diaz-Toca, G.M. and Gonzales-Vega, L., Various new expressions for subresultants and their applications, Appl. Algebra Eng., Comm. Comput., 2004, vol. 15, pp. 233–266.

Abdeljaoued, J., Diaz-Toca, G.M., and Gonzalez-Vega, L., Minors of Bézout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor, Int. J. Comput. Math., 2004, vol. 81, pp. 1223–1238.

Kalinina, E.A. and Uteshev, A.Yu., Teoriya isklyucheniya (Elimination Theory), St. Petersburg: Naucho-issledovatel’skii inst. khimii, St. Petersburg Univ., 2002.

Sylvester, J.J., A method of determining by mere inspection the derivatives from two equations of any degree, in New York: Chelsea, 1973, vol. 1, pp. 54–57.

Bôcher, M., Introduction to Higher Algebra, New York: Macmillan, 1907.

Krein, M.G. and Naimark, M.A., The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear Multilin. Algebra, 1981, vol. 10, no. 4. pp. 265–308.

Gantmacher F. R. Theory of Matrices. New York: Chelsea Publishing Co., 1959, Vols. 1 and 2.

Collins, G.E., Subresultants and reduced polynomial remainder sequences, J. ACM, 1967, vol. 14, no. 1. pp. 128–142.

Uteshev, A.Yu., Discriminant, 2015. http://pmpuru/ vf4/dets/discrim.

Bruno A.D. and Batkhin A.B., Asymptotic solution of an algebraic equation, Dokl. Math., 2011, vol. 84, no. 2. pp. 634–639.

Bruno, A.D. and Batkhin, A.B., Resolution of an algebraic singularity by power geometry algorithms, Program. Comput. Software, 2012, vol. 38, no. 2. pp. 57–72.

Andrews, G.E., The Theory of Partitions, Reading: Addison-Wesley, 1976.

MacDonald, I.G., Symmetric Functions and Hall Polynomials, New York: Oxford Univ. Press, 1995.

Finikov, S.P., Theory of Surfaces, Moscow: KomKniga, 2010, 2nd ed.

Krivoshapko, S.N. and Ivanov, V.N., Encyclopedia of Analytical Surfaces, Moscow: LIBROKOM, 2010.