Xác định tham số và Đánh giá Mô hình Mô phỏng Đơn giản (SSM-iCrop2) cho Sự phát triển và Năng suất Khoai tây (Solanum tuberosum L.) tại Iran

Potato Research - Tập 63 - Trang 545-563 - 2020
Amir Dadrasi1, Benjamin Torabi2, Asghar Rahimi1, Afshin Soltani2, Ebrahim Zeinali2
1Department of Genetic and Plant Production, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
2Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gogran, Iran

Tóm tắt

Các mô hình cây trồng có thể được sử dụng để ước đoán năng suất, yêu cầu nước và nhu cầu dinh dưỡng của thực vật trong các điều kiện khác nhau. Nghiên cứu này xem xét hiệu suất của mô hình SSM-iCrop2 trong việc dự đoán năng suất củ, giai đoạn phát sinh và yêu cầu nước của khoai tây (Solanum tuberosum L.) dưới những biến đổi khí hậu tại Iran. Việc mô phỏng sự phát triển của khoai tây, năng suất củ và yêu cầu nước cho các giống thường được trồng ở Iran (Agria, Marfona, Sante và Arinda) được thực hiện bằng cách sử dụng mô hình SSM-iCrop2. Dữ liệu từ các thí nghiệm thực địa khác nhau ở những tỉnh sản xuất khoai tây chính được sử dụng để xác định tham số và đánh giá. Kết quả xác định tham số của mô hình SSM-iCrop2 cho thấy rằng hai nhóm trưởng thành (trưởng thành sớm và muộn) được xác định với các đơn vị nhiệt là 1100 và 1500 °C ngày−1 tương ứng, trong những tỉnh sản xuất khoai tây quan trọng. Mô hình này đã được đánh giá dựa trên dữ liệu thực nghiệm độc lập mà không được sử dụng cho bước xác định tham số. Năng suất củ quan sát được và yêu cầu nước dao động từ 2013 đến 5902 g m−2 và từ 3523 đến 8547 m3 ha−1 với mức trung bình là 3542 g m−2 và 6178 m3 ha−1, tương ứng. Năng suất củ và yêu cầu nước mô phỏng thay đổi trong khoảng từ 2489 đến 5881 g m−2 và từ 2200 đến 7149 m3 ha−1 với mức trung bình là 3607 g m−2 và 5901 m3 ha−1, tương ứng. Ngoài ra, kết quả đánh giá cho thấy hệ số tương quan (r), sai số vuông căn trung bình (RMSE) và hệ số biến thiên (CV) cho năng suất củ và yêu cầu nước mô phỏng so với quan sát là 0.80, 543 g m−2 và 14% và 0.85, 944 m3 ha−1 và 15%, tương ứng. Do đó, mô hình có thể được sử dụng để ước đoán năng suất củ tiềm năng, khoảng chênh lệch năng suất và tác động của biến đổi khí hậu.

Từ khóa

#mô hình cây trồng #khoai tây #SSM-iCrop2 #dự đoán năng suất #yêu cầu nước #biến đổi khí hậu

Tài liệu tham khảo

Aboutalebian MA, Mazaheri D (2011) The combined effect of soil cover on weed control and yield of potato yield. Iran J Field Crop Sci 43:255–264 Ahmadvand G, Haji-Nia S (2015) Effect of cover plant and different tillage systems on physical properties of soil and yield of potato. Elec J Crop Prod 8:163–182 Akbari S, Soltani E (2017) Parameterization and evaluation of simple model for simulation of growth and yield of soybean in Tehran climatic condition. J Agric Crop Prod 19:751–764 Alberda T (1962) Actual and potential production of agricultural crops. Neth J Agric Sci 10:325–333 Amini RA, Dabakh-mohamad-inasab A, Ghorbani-Far S (2015) Use of physical, agronomic and chemical methods in the management of potato weed. J Agric Sci Sustain Prod 25(4):105–118 Amir J, Sinclair TR (1991) A model of water limitation on spring wheat growth and yield. Field Crop Res 28:59–69 Baghani J, Sadr-Ghaen H, Kanooni A (2007) The effect of planting pattern and water levels on the yield of potato under drip irrigation. J Agric Eng Res 8(4):81–94 Baghani J, Alizadeh A, Farid-hosseini A (2012) The effect of surface and subsurface drip irrigation on quantity and quality potato. Iran J lrri Drain 3(6):238–244 Bagheri HR, Gharineh MH, Bakhshandeh AM, Taei J, Mehnatkesh AM, Andarzyan B (2016) Effect of water stress and different levels of nitrogen fertilizer on yield and yield components and potato (Solanum tuberosum L.) water use efficiency. J Environ Stress Agric Sci 9(1):1–14 Borus D, Parsons D, Boersma M, Brown H, Mohammed C (2018) Improving the prediction of potato productivity: APSIM-potato model parameterization and evaluation in Tasmania. Aust J Crop Sci 12:32–43 Brown HE, Huth N, Holzworth D (2011) A potato model built using the APSIM Plant.NET Framework. In: 19th International Congress on Modelling and Simulation. p 961–967 Carli C, Yuldashev F, Khalikov D, Condori B, Mares V, Monneveux P (2014) Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: a field and modeling perspective. Field Crops Res 163:90–99 Condori B, Hijmans RJ, Quiroz R, Ledent J-F (2010) Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling. Field Crops Res 119:135–144 De Wit CT (1964) Photosynthesis of leaf canopies. Agricultural Research Report 663. Pudoc Wageningen 57 Eskandari A, Khazaie HR, Nezami A, Kafi M (2011) Study the effects of irrigation regimes on yield and some qualitative characteristics of three cultivars of potato (Solanum tuberosum L.). J Water Soil 25(2):240–247 FAOSTAT (2017) Online database. Available at http://faostat.fao.org. Accessed 13th to18th June 2017 Ghadami-Firouzabadi A, Parvizi K (2010) The effect of low irrigation on yield and water use efficiency of new colonies of potato in row drip irrigation. J Res Water Agric 24(2):133–144 Griffin TS, Johnson BS, Ritchie JT (1993) A simulation model for potato growth and development: Substor-potato version 2.0. Michigan State University. Department of Crop and Soil Sciences Haghighati B, BromandNasab S, Naseri A (2016) Effect of deficit irrigation and partial root–zone drying on yield and water use efficiency of two potato cultivars. J Water Soil 30(3):717–729 Hajjarpoor A, Vadez V, Soltani A, Gaur P, Whitbread A, Babu DS, Gumma MK, Diancoumba M, Kholová J (2018) Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Res 223:93–104 Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J Exp Bot 61:2185–2202 Haverkort AJ, Franke AC, Steyn JM, Pronk AA, Caldiz DO, Kooman PL (2015) A robust potato model: LINTUL-POTATO-DSS. Potato Res 58(4):313–327 Hossein-Panahi F, Koocheki A, Nassiri M, Ghorbani R (2009) Evaluation of yield and yield component in potato/corn intercropping. Iran J Field Crops Res 7(1):23–30 Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E (2009) AquaCrop the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101:448–459 Jalali AH, Salehi F (2015) The effect of nitrogen application and its split on yield, dry matter percentage and potato harvest index of Marfona cultivar. J Crop Prod Proc 15:83–91 Jam E, Ebadi A, Amini I, Dehdar B (2015) Effect of planting density and seed-mini tuber size on some quantitative and qualitative traits of potato. Agron J 81:20–29 Jamieson PD, Semenov MA (2000) Modelling nitrogen uptake and redistribution in wheat. Field Crops Res 68:21–29 Kirda C, Hera C, Moutonnet P, Nielsen DR (1999) Crop yield response to deficit irrigation: report of an FAO/IAEA co-ordinated research program by using nuclear techniques: executed by the soil and water management and crop nutrition section of the joint FAO/IAEA division of nuclear techniques in food and agriculture. Springer Science and Business Media Koo J, Dimes J (2013) HC27 generic soil profile database. Harvard Dataverse ver. 4. International Food Policy Research Institute, Washington, DC Kooman PL, Haverkort AJ (1994) Modelling development and growth of the potato crop influenced by temperature and day length: LINTUL-POTATO. In: Haverkort AJ, MacKerron DKL (eds) Ecology and modelling of potato crops under conditions limiting growth. Kluwer Academic Publishers, Dordrecht, pp 41–60 Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116 Lisson SN, Cotching WE (2011) Modelling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania. Aust Agric Syst 104:600–608 Madani H, Moghimi A, Sajedi NA (2010) Effect of different levels of zeolite and irrigation interval on yield and some potato traits. New Find Agric 3:281–290 Mamnoei E, Karaminezhad MR, Rashed Mohasel MH, Shimi P, Aein A (2016) Evaluation of some herbicides on potato weed control in Jiroft and Karaj. J Plant Prot 30(3):368–378 Masoudi F, Zardashti MR, Abdollahi M, Oulakani B, Rasoli Sadghiani MH, Nazarli H (2010) Effect of irrigation intervals on yield and plant characteristics of potato (Solanum tuberosum L.). Iran J Crop Sci 12(3):265–278 Naderi M, Shayannejad M, Haidari S, Haghighati B (2016) Effect of different levels of irrigation water on quantitative and qualitative characteristics of potato and determination of its optimum consumptive use of water in Shahr-e-Kord. J Water Soil 30(5):1370–1381 Nasrollahzadeh-Asl A, Sedaqat G (2015) Effects of planting depth and irrigation disruption on yield and yield components in potato (Solanum tuberosum L). J Crop Sci Res Arid Reg 2(1):31–42 Nehbandani AR, Soltani A, Zeinali E, Raeisi S, Rajabi R (2015) Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. J Plant Prod Res 22:1–26 Ng E, Loomis RS (1984) Simulation of growth and yield the potato crop. Simulation Monographs Pudoc, Wageningen Nikzad M, Taei J, Azamisardoei ZA, Amiri E (2015) Agro-ecological zonation of potato using GIS and WOFOST simulation model in Jiroft city. MSc thesis Faculty of Agriculture Jiroft Univ Kerman Noorhosseini S, Soltani A, Ajamnoroozi H (2018) Simulating peanut (Arachis hypogaea L.) growth and yield with the use of the simple simulation model (SSM). Comput Electron Agric 145:63–75 Parvizi K (2008) Evaluation of quantitative and qualitative traits of late and early ripening advanced potato cultivars. Agron J 79:80–90 Pickering NB, Hansen JW, Jones JW, Wells CM, Chan VK, Godwin DC (1994) WeatherMan: a utility for managing and generating daily weather data. Agron J 86:332–337 Ranjbar M, Nasresfahani M, Mirzakhani M (2013) The study of growth indices of commercial and conventional potato cultivars in Esfahan region. Iran J Dyn Agric 1(4):295–304 Raymundo R, Asseng S, Cammarano D, Quiroz R (2014) Potato, sweet potato, and yam models for climate change: a review. Field Crops Res 166:173–185 Richter GM, Semenov MA (2005) Modelling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agric Syst 84:77–97 Ritchie JT, Griffin TS, Johnson BS (1995) SUBSTOR functional model of potato growth, development and yield. In: Kabat P et al (eds) Modelling and parameterization of the soil–plant–atmosphere system: a comparison of potato growth models. Wageningen, Wageningen Pers, pp 401–435 Robertson MJ, Carberry PS, Huth NI, Turpin JE, Probert ME, Poulton PL, Bell M, Wright GC, Yeates SJ, Brinsmead RB (2002) Simulation of growth and development of diverse legume species in APSIM. Aust J Agric Res 53:429–446 Rostami-Ajirloo A, Mohamadi GhR, Shaban M (2012) Effect of nitrogen biofertilizers with urea fertilizer on some quantitive and qualitative traits of potato var. Marphona. Elect J Crop Prod 5(3):131–144 Sabbah A, Ghaffari-Nejad SA (2008) Determination of the best water level as trickle, irrigation and method of tape replacement on potato yield in Jiroft area. Agron J 79:194–199 SCI (2015) Statistical Center of Iran. www.amar.org.ir/english. Accessed 11 Sept 2015 Sinclair TR, Muchow RC (1999) Radiation use efficiency. In: Advances in Agronomy. Elsevier, p 215–265 Sobhani AR, Hamidi H (2014) Effects of different irrigation levels and amounts of potassium on qualitative characteristics of potato in Mashhad climatic conditions. J Plant Prod 20(4):65–81 Soltani A (2001) Production and completion of incomplete meteorological data using existing data. Report of research project. Gorgan Univ Agric Sci. and Natur Resour. Gorgan Iran Soltani A, Hoogenboom G (2007) Assessing crop management options with crop simulation models based on generated weather data. Field Crops Res 103:198–207 Soltani A, Sinclair TR (2011) A simple model for chickpea development, growth and yield. Field Crops Res 124:252–260 Soltani A, Sinclair TR (2012) Modeling physiology of crop development, growth and yield. CABI Soltani A, Sinclair TR (2015) A comparison of four wheat models with respect to robustness and transparency: simulation in a temperate, sub-humid environment. Field Crops Res 175:37–46 Soltani A, Maddah V, Sinclair TR (2013) SSM-wheat: a simulation model for wheat development, growth and yield. Int J Plant Prod 7(4):711–740 Soltani A, Robertson MJ, Torabi B, Yousefi-Daz M, Sarparast R (2006) Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric For Meteorol 138:156–167 Torabi B, Soltani A, Galeshi S, Zeinali E (2011) Assessment of yield gap due to nitrogen management in wheat. Aust J Crop Sci 5:879 Van Diepen CA, Wolf J, Van Keulen H, Rappoldt C (1989) WOFOST: a simulation model of crop production. Soil Use Manag 5:16–24 Van Ittersum M, Leffelaar P, van Keulen H, Kropff M, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234 Van Keulen H, Penning de Vries FWT, Drees EM (1982) A summary model for crop growth. In: Van Laar HH (ed) Simulation of plant growth and crop production. Simulation Monographs, Pudoc Wageningen, pp 87–97 Williams SL, Watson N (1985) Perceived danger and perceived self-efficacy as cognitive determinants of acrophobic behavior. Behav Ther 16:136–146 Yazdandoust-Hamedani M (2003) A study of the effect of nitrogen rates on yield, yield components and nitrate accumulation in potato varieties. Iran J Crop Sci 34:977–985