Parameter estimation and uncertainty quantification for systems biology models

Current Opinion in Systems Biology - Tập 18 - Trang 9-18 - 2019
Eshan D. Mitra1, William S. Hlavacek1
1Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

Tài liệu tham khảo

Brownlie, 2013, T cell receptor signalling networks: branched, diversified and bounded, Nat Rev Immunol, 13, 257, 10.1038/nri3403 Dal Porto, 2004, B cell antigen receptor signaling 101, Mol Immunol, 41, 599, 10.1016/j.molimm.2004.04.008 Rivera, 2006, Molecular regulation of mast cell activation, J Allergy Clin Immunol, 117, 1214, 10.1016/j.jaci.2006.04.015 Chakraborty, 2017, A perspective on the role of computational models in immunology, Annu Rev Immunol, 35, 403, 10.1146/annurev-immunol-041015-055325 Lin, 2018 Hoops, 2006, COPASI—a COmplex PAthway SImulator, Bioinformatics, 22, 3067, 10.1093/bioinformatics/btl485 Raue, 2015, A modeling environment tailored to parameter estimation in dynamical systems, Bioinformatics, 31, 3558, 10.1093/bioinformatics/btv405 Fröhlich, 2017, Parameter estimation for dynamical systems with discrete events and logical operations, Bioinformatics, 33, 1049, 10.1093/bioinformatics/btw764 Fröhlich, 2017, Scalable parameter estimation for genome-scale biochemical reaction networks, PLoS Comput Biol, 13, 10.1371/journal.pcbi.1005331 Fröhlich, 2019, Scalable inference of ordinary differential equation models of biochemical processes, 385 Stapor, 2018, PESTO: parameter EStimation TOolbox, Bioinformatics, 34, 705, 10.1093/bioinformatics/btx676 Mitra, 2019, PyBioNetFit and the biological property Specification Language, iScience, 19, 1012, 10.1016/j.isci.2019.08.045 Gyori, 2017, From word models to executable models of signaling networks using automated assembly, Mol Syst Biol, 13, 954, 10.15252/msb.20177651 Todorov, 2019, Indra-ipm: interactive pathway modeling using natural language with automated assembly, Bioinformatics, 10.1093/bioinformatics/btz289 Faeder, 2009, Rule-based modeling of biochemical systems with BioNetGen, Methods Mol Biol, 500, 113, 10.1007/978-1-59745-525-1_5 Chylek, 2013, Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems, Wiley Interdiscipl Rev: Syst Biol Med, 6, 13 Hucka, 2003, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, 19, 524, 10.1093/bioinformatics/btg015 Hucka, 2015, The systems biology Markup Language (SBML): language specification for level 3 version 1 core, J Integr Bioinf, 12, 266 Zhang, 2018, SBML level 3 package: multistate, multicomponent and multicompartment species, version 1, release 1, J Integr Bioinf, 15, 20170077 Harris, 2016, BioNetGen 2.2: advances in rule-based modeling, Bioinformatics, 32, 3366, 10.1093/bioinformatics/btw469 Le Novère, 2006, BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic Acids Res, 34, D689, 10.1093/nar/gkj092 Gillespie, 2006, Stochastic simulation of chemical kinetics, Annu Rev Phys Chem, 58, 35, 10.1146/annurev.physchem.58.032806.104637 Suderman, 2019, Generalizing Gillespie's direct method to enable network-free simulations, Bull Math Biol, 81, 2822, 10.1007/s11538-018-0418-2 Sneddon, 2011, Efficient modeling, simulation and coarse-graining of biological complexity with NFsim, Nat Methods, 8, 177, 10.1038/nmeth.1546 Moré, 1978, The Levenberg-Marquardt algorithm: implementation and theory, 105 Byrd, 1995, A limited memory algorithm for bound constrained optimization, SIAM J Sci Comput, 16, 1190, 10.1137/0916069 Sengupta, 2014, Efficient gradient computation for dynamical models, Neuroimage, 98, 521, 10.1016/j.neuroimage.2014.04.040 Raue, 2013, Lessons learned from quantitative dynamical modeling in systems biology, PLoS One, 8, 10.1371/annotation/ea0193d8-1f7f-492a-b0b7-d877629fdcee Hass, 2019, Benchmark problems for dynamic modeling of intracellular processes, Bioinformatics, 35, 3073, 10.1093/bioinformatics/btz020 Raia, 2011, Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets, Cancer Res, 71, 693, 10.1158/0008-5472.CAN-10-2987 Crauste, 2017, Identification of nascent memory CD8 T cells and modeling of their ontogeny, Cell Syst, 4, 306, 10.1016/j.cels.2017.01.014 Zhang, 2014, FATODE: a library for forward, adjoint, and tangent linear integration of ODEs, SIAM J Sci Comput, 36, 504, 10.1137/130912335 Cao, 2003, Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution, SIAM J Sci Comput, 24, 1076, 10.1137/S1064827501380630 Fröhlich, 2018, Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model, Cell Syst, 7, 567, 10.1016/j.cels.2018.10.013 Chylek, 2015, Modeling for (physical) biologists: an introduction to the rule-based approach, Phys Biol, 12, 10.1088/1478-3975/12/4/045007 Margossian, 2019 Baydin, 2018, Automatic differentiation in machine learning: a survey, J Marchine Learn Res, 18, 1 Carpenter, 2015 Carpenter, 2017, Stan: a probabilistic programming language, J Stat Softw, 76, 1 Rackauckas, 2018 Gandomi, 2013, Metaheuristic algorithms in modeling and optimization, 1 Kuo, 2015, The gradient evolution algorithm: a new metaheuristic, Inf Sci, 316, 246, 10.1016/j.ins.2015.04.031 Boussaïd, 2013, A survey of optimization metaheuristics, Inf Sci, 237, 82, 10.1016/j.ins.2013.02.041 Sörensen, 2018, A history of metaheuristics, 791 Villaverde, 2019, Benchmarking optimization methods for parameter estimation in large kinetic models, Bioinformatics, 35, 830, 10.1093/bioinformatics/bty736 Storn, 1997, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J Glob Optim, 11, 341, 10.1023/A:1008202821328 Glover, 2000, Fundamentals of scatter search and path relinking, Contr Cybern, 29, 652 Eberhart, 1995, A new optimizer using particle swarm theory, 39 Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671 Penas, 2015, Enhanced parallel differential evolution algorithm for problems in computational systems biology, Appl Soft Comput, 33, 86, 10.1016/j.asoc.2015.04.025 Moraes, 2015, A robust parallel algorithm of the particle swarm optimization method for large dimensional engineering problems, Appl Math Model, 39, 4223, 10.1016/j.apm.2014.12.034 Penas, 2017, Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy, BMC Bioinf, 18, 52, 10.1186/s12859-016-1452-4 Chylek, 2014, Phosphorylation site dynamics of early T-cell receptor signaling, PLoS One, 9, 10.1371/journal.pone.0104240 Egea, 2009, Dynamic optimization of nonlinear processes with an enhanced scatter search method, Ind Eng Chem Res, 48, 4388, 10.1021/ie801717t 2012 Nelder, 1965, A simplex method for function minimization, Comput J, 7, 308, 10.1093/comjnl/7.4.308 Lee, 2007, A parallel implementation of the simplex function minimization routine, Comput Econ, 30, 171, 10.1007/s10614-007-9094-2 Chen, 2000, Kinetic analysis of a molecular model of the budding yeast cell cycle, Mol Biol Cell, 11, 369, 10.1091/mbc.11.1.369 Chen, 2004, Integrative analysis of cell cycle control in budding yeast, Mol Biol Cell, 15, 3841, 10.1091/mbc.e03-11-0794 Oguz, 2013, Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model, BMC Syst Biol, 7, 53, 10.1186/1752-0509-7-53 Pargett, 2013, Quantitative model analysis with diverse biological data: applications in developmental pattern formation, Methods, 62, 56, 10.1016/j.ymeth.2013.03.024 Pargett, 2014, Model-based analysis for qualitative data: an application in Drosophila germline stem cell regulation, PLoS Comput Biol, 10, 10.1371/journal.pcbi.1003498 Mitra, 2018, Using both qualitative and quantitative data in parameter identification for systems biology models, Nat Commun, 9, 3901, 10.1038/s41467-018-06439-z Smith, 1997, Penalty functions, C5.2 Nocedal, 1999 Mezura-Montes, 2011, Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm Evol Comput, 1, 173, 10.1016/j.swevo.2011.10.001 Harmon, 2017, Timescale separation of positive and negative signaling creates history-dependent responses to IgE receptor stimulation, Sci Rep, 7, 15586, 10.1038/s41598-017-15568-2 Kreutz, 2013, Profile likelihood in systems biology, FEBS J, 280, 2564, 10.1111/febs.12276 Kreutz, 2012, Likelihood based observability analysis and confidence intervals for predictions of dynamic models, BMC Syst Biol, 6, 10.1186/1752-0509-6-120 Hass, 2016, Fast integration-based prediction bands for ordinary differential equation models, Bioinformatics, 32, 1204, 10.1093/bioinformatics/btv743 Kaschek, 2019, Dynamic modeling, parameter estimation, and uncertainty analysis in R, J Stat Softw, 88 Raue, 2009, Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25, 1923, 10.1093/bioinformatics/btp358 Hall, 1992 Frölich, 2014, Uncertainty analysis for non-identifiable dynamical systems: profile likelihoods, bootstrapping and more, Lect Notes Comput Sci, 8859, 61, 10.1007/978-3-319-12982-2_5 Givens, 2013 Press, 2007, Numerical recipes Chib, 1995, Understanding the metropolis-hastings algorithm, Am Stat, 49, 327 Earl, 2005, Parallel tempering: theory, applications, and new perspectives, Phys Chem Chem Phys, 7, 3910, 10.1039/b509983h Betancourt, 2017 Gelman, 1992, Inference from iterative simulation using multiple sequences, Stat Sci, 7, 457, 10.1214/ss/1177011136 Vehtari, 2019 Neal, 2012 Hoffman, 2014, The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, J Mach Learn Res, 15, 1593 Bales, 2019 Medley, 2016, Guidelines for reproducibly building and simulating systems biology models, IEEE (Inst Electr Electron Eng) Trans Biomed Eng, 63, 2015 Waltemath, 2016, How modeling standards, software, and initiatives support reproducibility in systems biology and systems medicine, IEEE (Inst Electr Electron Eng) Trans Biomed Eng, 63, 1999 Bergmann, 2017, COPASI and its applications in biotechnology, J Biotechnol, 261, 215, 10.1016/j.jbiotec.2017.06.1200 Egea, 2014, MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics, BMC Bioinf, 15, 136, 10.1186/1471-2105-15-136 Eydgahi, 2013, Properties of cell death models calibrated and compared using Bayesian approaches, Mol Syst Biol, 9, 644, 10.1038/msb.2012.69 Lopez, 2013, Programming biological models in Python using PySB, Mol Syst Biol, 9, 646, 10.1038/msb.2013.1 Csikász-Nagy, 2006, Analysis of a generic model of eukaryotic cell-cycle regulation, Biophys J, 90, 4361, 10.1529/biophysj.106.081240 Rausenberger, 2011, Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light, Cell, 146, 813, 10.1016/j.cell.2011.07.023 Kraikivski, 2015, From START to FINISH: computational analysis of cell cycle control in budding yeast, npj Syst Biol Appl, 1, 15016, 10.1038/npjsba.2015.16 Mitra, 2019 Kerketta, 2016, Effect of spatial inhomogeneities on the membrane surface on receptor dimerization and signal initiation, Front Cell Dev Biol, 4, 10.3389/fcell.2016.00081 Andrews, 2010, Detailed simulations of cell biology with Smoldyn 2.1, PLoS Comput Biol, 6, 10.1371/journal.pcbi.1000705 Kerr, 2008, Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces, SIAM J Sci Comput, 30, 3126, 10.1137/070692017