Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed

W. Hao1, Nan Gui1, Xingtuan Yang1, Jiyuan Tu2,1, Shengyao Jiang1
1Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, China
2School of Engineering, RMIT University, Melbourne, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, J. C., Churchill, S. W. 1963. Radiant heat transfer in packed beds. AIChE J, 9: 35–41.

Dai, W., Hanaor, D., Gan, Y. 2019. The effects of packing structure on the effective thermal conductivity of granular media: A grain scale investigation. Int J Therm Sci, 142: 266–279.

De Beer, M., du Toit, C. G., Rousseau, P. G. 2018. Experimental study of the effective thermal conductivity in the near-wall region of a packed pebble bed. Nucl Eng Des, 339: 253–268.

Godbee, H. W., Ziegler, W. T. 1966. Thermal conductivities of MgO, Al2O3, and ZrO2 powders to 850°C. II. Theoretical. J Appl Phys, 37: 56–65.

Gusarov, A. V. 2019. Statistical approach to radiative transfer in the heterogeneous media of thin-wall morphology—II: Applications. J Heat Transf, 141: 012701.

Jia, X., Gui, N., Wu, H., Yang, X., Tu, J., Jiang, S. 2017. Numerical study and analysis of the effects of recirculation flow rates in drained pebble flow. Powder Technol, 314: 608–619.

Jiang, S., Tu, J., Yang, X., Gui, N. 2019. A review of pebble flow study for pebble bed high temperature gas-cooled reactor. Exp Comput Multiphase Flow, 1: 159–176.

Kunii, D., Smith, J. M. 1960. Heat transfer characteristics of porous rocks. AIChE J, 6: 71–78.

Latifi, M. S., Colangelo, G., Starace, G. 2020. A CFD study on the effect of size of fuel sphere on PBR core. Exp Comput Multiphase Flow, 2: 109–114.

Laubitz, M. J. 1959. Thermal conductivity of powders. Can J Phys, 37: 798–808.

Nasr, K., Viskanta, R., Ramadhyani, S. 1994. An experimental evaluation of the effective thermal conductivities of packed beds at high temperatures. J Heat Transf, 116: 829–837.

Podlozhnyuk, A., Pirker, S., Kloss, C. 2017. Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework. Comput Particle Mech, 4: 101–118.

Rabadan Santana, E., Pozzetti, G., Peters, B. 2019. Application of a dual-grid multiscale CFD-DEM coupling method to model the raceway dynamics in packed bed reactors. Chem Eng Sci, 205: 46–57.

Rouhani, M., Huttema, W., Bahrami, M. 2018. Effective thermal conductivity of packed bed adsorbers: Part 1–Experimental study. Int J Heat Mass Tran, 123: 1204–1211.

Schotte, W. 1960. Thermal conductivity of packed beds. AIChE J, 6: 63–67.

Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S. A., Kloss, C., Pirker, S., Ooi, J. Y. 2018. DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol, 329: 288–303.

Tang, Y., Zhang, L., Guo, Q., Xia, B., Yin, Z., Cao, J., Tong, J., Rycroft, C. H. 2019. Analysis of the pebble burnup profile in a pebble-bed nuclear reactor. Nucl Eng Des, 345: 233–251.

Wang, S., Luo, K., Hu, C., Lin, J., Fan, J. 2019. CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application. Chem Eng Sci, 197: 280–295.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2016a. Effects of particle size and region width on the mixing and dispersion of pebbles in two-region pebble bed. Granul Matter, 18: 76.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2016b. Effect of scale on the modeling of radiation heat transfer in packed pebble beds. Int J Heat Mass Tran, 101: 562–569.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2017. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation. Int J Heat Mass Tran, 110: 393–405.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018a. A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Tran, 118: 275–288.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018b. Modeling effective thermal conductivity of thermal radiation for nuclear packed pebble beds. J Heat Transf, 140: 042701.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018c. Particle-scale investigation of thermal radiation in nuclear packed pebble beds. J Heat Transf, 140: 092002.

Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2020. An approximation function model for solving effective radiative heat transfer in packed bed. Ann Nucl Energy, 135: 107000.

Wu, Y., Ren, C., Li, R., Yang, X., Tu, J., Jiang, S. 2018d. Measurement on effective thermal diffusivity and conductivity of pebble bed under vacuum condition in High Temperature Gas-cooled Reactor. Prog Nucl Energ, 106: 195–203.

Zhang, Z., Dong, Y., Li, F., Zhang, Z., Wang, H., Huang, X., Li, H., Liu, B., Wu, X., Wang, H., Diao, X., Zhang, H., Wang, J. 2016. The Shandong Shidao bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation. Engineering, 2: 112–118.