Parallel branch and bound for global optimization with combination of Lipschitz bounds
Tóm tắt
Từ khóa
Tài liệu tham khảo
D'Apuzzo M., 2006, Handbook of Parallel Computing and Statistics, 225
Gourdin E., 1994, Global optimization of multivariate Lipschitz functions: Survey and computational comparison
Horst R., 1995, Introduction to Global Optimization
Jansson, C. and Knüppel, O. 1992. “A global minimization method: The multi-dimensional case”. TU Hamburg-Harburg. Tech. Rep
Jaumard, B., Herrmann, T. and Ribault, H. 1994. “An on-line cone intersection algorithm for global optimization of multivariate Lipschitz functions”. Montreal: Les Cahiers du GERAD.
Kvasov D. E., 2003, Comput. Math. Math. Phys., 43, 40
Madsen, K. and Žilinskas, J. 2000. “Testing branch-and-bound methods for global optimization”. Technical University of Denmark. Tech. Rep. IMM-REP-2000-05
Paulavičius R., 2007, Inform. Technol. Control, 36, 383
Pintér J., 1996, Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications
Piyavskii S. A., 1972, Zh. Vychisl. Mat. mat. Fiz, 12, 888
Sergeyev Y. D., 2008, Diagonal Global Optimization Methods
Sergeyev Y. D., 2009, Global Optimization: Theory, Methods and Applications, I, 518
Strongin R. G., 2000, Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms, 10.1007/978-1-4615-4677-1
Todt M. J., 1976, The Computation of Fixed Points and Applications, 24
Zhigljavsky A., 2008, Stochastic Global Optimization
Žilinskas J., 2000, Inform. Technol. Control, 14, 45
Žilinskas J., 2007, Inform. Technol. Control, 36, 377