Parallel Implementation of Vortex Element Method on CPUs and GPUs
Tài liệu tham khảo
S. M. Belotserkovskii and I. K. Lifanov. Methods of Discrete Vortices. CRC Press, Boca Raton, 1994. ISBN: 978-0849393075.
I. K. Lifanov, L.N. Poltavskii, and G. M. Vainikko. Hypersingular Integral Equations and Their Applications in Mechanics and Physics. CRC Press, Boca Raton, 2003. ISBN: 978-0415309981.
G. Ya. Dynnikova. Vortex methods for unsteady viscous incompressible flows investigation. D. Sc. Thesis (Phys. and Math.), 2011. (in Russian).
V. A. Aparinov and A. V. Dvorak. Discrete vortex method with closed vortex frameforks. Proceedings, VVIA n.a. N.E. Joukovsky, 1986. 1313, pages 424-432 (in Russian).
I. K. Marchevsky and G. A. Shcheglov. 3D vortex structures dynamics simulation using vortex fragmentons. In Proc. of ECCOMAS 2012 — 6th European Congress on Computational Methods in Applied Sciences and Engineering, pages 5716-5735, 2012. Online at http://eccomas.cimne.com/.
I. K. Marchevsky, V.S. Moreva, and V. V Puzikova. The efficiency comparison of the vortex element method and the immersed boundary method for numerical simulation of airfoil's hydroelastic oscillations. In Proc. of VI International ECCOMAS Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED-2015), pages 532-543, Venice, May 2015. Online at http://congress.cimne.com.
A. Colagrossi, G. Graziani, and M. Pulvirenti. Particles for fluids: SPH versus vortex methods. Math. and Mech. of Complex Systems, 2(1):45-70, 2014. DOI: 10.2140/memocs.2014.2.45.
Andronov P. R., S.V. Guvernyuk, and G. Ya. Dynnikova. Vortex Methods of Calculation of Unsteady Hydrodynamic Loads. Moscow State University Publ., Moscow, 2006. (in Russian). ISBN 978-5211052560.
S. Li and W. K. Liu. Meshfree Particle Methods. Springer, Berlin, 2007. ISBN 978-3540222569.
J. P. Christiansen. Numerical simulation of hydrodynamics by the method of point vortices. J. Comp. Phys., 13(3):363-379, 1973. DOI: 10.1016/0021-9991(73)90042-9.
A. J. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57(4):785-796, 1973. DOI: 10.1017/S0022112073002016.
V. S. Moreva and I. K. Marchevsky. Vortex element method for 2D flow simulation with tangent velocity components on airfoil surface. In Proc. of ECCOMAS 2012 — 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, 2012. Online at http://eccomas.cimne.com/.
K. S. Kuzmina and Marchevsky I. K. On numerical schemes in 2D vortex element method for flow simulation around moving and deformable airfoils. In Proc. of APM-2014 — Summer Conf. ‘Advanced Problems in Mechanics’, St. Petersburg, 2014. Online at http://apm-conf.spb.ru/.
G. Ya. Dynnikova. Fast technique for solving the N -body problem in flow simulation by vortex methods. Computational Mathematics and Mathematical Physics, 49(8):1389-1396, 2009. DOI: 10.1134/S0965542509080090.
F. A. Cruz and L. A. Barba. Characterization of the errors of the fast multipole method approximation in particle simulations. 2008. Online at http://arxiv.org/abs/0809.1810.
K. S. Kuzmina and I. K. Marchevsky. Estimation of computational complexity of the fast numerical algorithm for calculating vortex influence in the vortex element method. Science and Education, 10:399-414, 2013. (in Russian), DOI: 10.7463/1013.0604030.
M. E. Makarova, I.K. Marchevsky, and V. S. Moreva. Flow simulation around a thin plate using a modified numerical scheme of the vortex element method. Science and Education, 9:233-242, 2013. (in Russian), DOI: 10.7463/0913.0602362.
S. R. Grechkin-Pogrebnyakov, K.S. Kuzmina, and I.K. Marchevsky. An implementation of vortex methods for modeling 2D incompressible flows using the CUDA technology. Numerical methods and programming, 16:165-176, 2015. (in Russian), Online at http://num-meth.srcc.msu.ru.