Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x
Baxter, 2008, Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth, Plutella xylostella, Insect Biochem. Mol., 38, 125, 10.1016/j.ibmb.2007.09.014
Baxter, 2010, Mis-spliced transcripts of nicotinic acetylcholine receptor α6 are associated with field evolved spinosad resistance in Plutella xylostella (L.), PLoS Genet., 6, e1000802, 10.1371/journal.pgen.1000802
Crava, 2010, Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hubner) and Bombyx mori (L.): sequences, mapping and expression, Insect Biochem. Mol., 40, 506, 10.1016/j.ibmb.2010.04.010
Daborn, 2002, A single P450 allele associated with insecticide resistance in Drosophila, Science, 297, 2253, 10.1126/science.1074170
Davies, 2007, DDT, pyrethrins, pyrethroids and insect sodium channels, IUBMB Life, 59, 151, 10.1080/15216540701352042
Estada, 1994, Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins, Appl. Environ. Microbiol., 60, 3840, 10.1128/aem.60.10.3840-3846.1994
Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949
Gahan, 2010, An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin, PLoS Genet., 6, e1001248, 10.1371/journal.pgen.1001248
Gatehouse, 2011, Insect-resistant biotech crops and their impacts on beneficial arthropods, Philos. Trans. R. Soc. B Biol. Sci., 366, 1438, 10.1098/rstb.2010.0330
Heckel, 1999, Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis, Proc. Natl. Acad. Sci. USA, 96, 8373, 10.1073/pnas.96.15.8373
Heckel, 2007, The diversity of Bt resistance genes in species of Lepidoptera, J. Invertebr. Pathol., 95, 192, 10.1016/j.jip.2007.03.008
Janmaat, 2003, Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni, Proc. Biol. Sci., 270, 2263, 10.1098/rspb.2003.2497
McNall, 2003, Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis, Insect Biochem. Mol., 33, 999, 10.1016/S0965-1748(03)00114-0
Morin, 2003, Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm, Proc. Natl. Acad. Sci. USA, 100, 5004, 10.1073/pnas.0831036100
Nagamatsu, 1998, Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin, Biosci. Biotechnol. Biochem., 62, 727, 10.1271/bbb.62.727
Sayyed, 2000, Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella, Appl. Environ. Microbiol., 66, 1509, 10.1128/AEM.66.4.1509-1516.2000
Schnepf, 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 775, 10.1128/MMBR.62.3.775-806.1998
Soberon, 2007, Engineering modified Bt toxins to counter insect resistance, Science, 318, 1640, 10.1126/science.1146453
Soberon, 2009, Signaling vs. punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?, Cell. Mol. Life Sci., 66, 1337, 10.1007/s00018-008-8330-9
Tabashnik, 1990, Field development of resistance to Bacillus thuringiensis in Diamondback moth (Lepidoptera: Plutellidae), J. Econ. Entomol., 83, 1671, 10.1093/jee/83.5.1671
Tabashnik, 1997, Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis, Proc. Natl. Acad. Sci. USA, 94, 12780, 10.1073/pnas.94.24.12780
Tabashnik, 1998, Insect resistance to Bacillus thuringiensis: Uniform or diverse?, Philos. Trans. R. Soc. Lond. B Biol. Sci., 353, 1751, 10.1098/rstb.1998.0327
Tabashnik, 2000, Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet, J. Invertebr. Pathol., 76, 81, 10.1006/jipa.2000.4941
Tamez-Guerra, 2006, Differences in susceptibility and physiological fitness of Mexican field Trichoplusia ni strains exposed to Bacillus thuringiensis, J. Econ. Entomol., 99, 937, 10.1093/jee/99.3.937
Vadlamudi, 1995, Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem., 270, 5490, 10.1074/jbc.270.10.5490
Wang, 2007, Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni, Appl. Environ. Microbiol., 73, 1199, 10.1128/AEM.01834-06
Xu, 2005, Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol., 71, 948, 10.1128/AEM.71.2.948-954.2005
Zhang, 2007, Sequence variation in cadherin alleles from the cabbage looper, Trichoplusia ni