Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera

Genetics - Tập 189 Số 2 - Trang 675-679 - 2011
Simon W. Baxter1, Francisco Rubén Badenes‐Pérez2, Anna Morrison1, Heiko Vogel3, Neil Crickmore4, Wendy Kain5, Ping Wang5, David G. Heckel3, Chris D. Jiggins1
1Department of Zoology, University of Cambridge, Cambridge, . CB2 3EJ, United Kingdom
2Instituto de Ciencias Agrarias , 28006 Madrid, Spain
3Department of Entomology , Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
4Department of Biochemistry , University of Sussex, Falmer BN1 9QG, United Kingdom
5Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, 14456

Tóm tắt

Abstract Despite the prominent and worldwide use of Bacillus thuringiensis (Bt) insecticidal toxins in agriculture, knowledge of the mechanism by which they kill pests remains incomplete. Here we report genetic mapping of a membrane transporter (ABCC2) to a locus controlling Bt Cry1Ac toxin resistance in two lepidopterans, implying that this protein plays a critical role in Bt function.

Từ khóa


Tài liệu tham khảo

Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x

Baxter, 2008, Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth, Plutella xylostella, Insect Biochem. Mol., 38, 125, 10.1016/j.ibmb.2007.09.014

Baxter, 2010, Mis-spliced transcripts of nicotinic acetylcholine receptor α6 are associated with field evolved spinosad resistance in Plutella xylostella (L.), PLoS Genet., 6, e1000802, 10.1371/journal.pgen.1000802

Crava, 2010, Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hubner) and Bombyx mori (L.): sequences, mapping and expression, Insect Biochem. Mol., 40, 506, 10.1016/j.ibmb.2010.04.010

Daborn, 2002, A single P450 allele associated with insecticide resistance in Drosophila, Science, 297, 2253, 10.1126/science.1074170

Davies, 2007, DDT, pyrethrins, pyrethroids and insect sodium channels, IUBMB Life, 59, 151, 10.1080/15216540701352042

Estada, 1994, Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins, Appl. Environ. Microbiol., 60, 3840, 10.1128/aem.60.10.3840-3846.1994

Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949

Gahan, 2010, An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin, PLoS Genet., 6, e1001248, 10.1371/journal.pgen.1001248

Gatehouse, 2011, Insect-resistant biotech crops and their impacts on beneficial arthropods, Philos. Trans. R. Soc. B Biol. Sci., 366, 1438, 10.1098/rstb.2010.0330

Heckel, 1999, Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis, Proc. Natl. Acad. Sci. USA, 96, 8373, 10.1073/pnas.96.15.8373

Heckel, 2007, The diversity of Bt resistance genes in species of Lepidoptera, J. Invertebr. Pathol., 95, 192, 10.1016/j.jip.2007.03.008

Janmaat, 2003, Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni, Proc. Biol. Sci., 270, 2263, 10.1098/rspb.2003.2497

McNall, 2003, Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis, Insect Biochem. Mol., 33, 999, 10.1016/S0965-1748(03)00114-0

Morin, 2003, Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm, Proc. Natl. Acad. Sci. USA, 100, 5004, 10.1073/pnas.0831036100

Nagamatsu, 1998, Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin, Biosci. Biotechnol. Biochem., 62, 727, 10.1271/bbb.62.727

Sayyed, 2000, Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella, Appl. Environ. Microbiol., 66, 1509, 10.1128/AEM.66.4.1509-1516.2000

Schnepf, 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 775, 10.1128/MMBR.62.3.775-806.1998

Soberon, 2007, Engineering modified Bt toxins to counter insect resistance, Science, 318, 1640, 10.1126/science.1146453

Soberon, 2009, Signaling vs. punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?, Cell. Mol. Life Sci., 66, 1337, 10.1007/s00018-008-8330-9

Tabashnik, 1990, Field development of resistance to Bacillus thuringiensis in Diamondback moth (Lepidoptera: Plutellidae), J. Econ. Entomol., 83, 1671, 10.1093/jee/83.5.1671

Tabashnik, 1997, Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis, Proc. Natl. Acad. Sci. USA, 94, 12780, 10.1073/pnas.94.24.12780

Tabashnik, 1998, Insect resistance to Bacillus thuringiensis: Uniform or diverse?, Philos. Trans. R. Soc. Lond. B Biol. Sci., 353, 1751, 10.1098/rstb.1998.0327

Tabashnik, 2000, Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet, J. Invertebr. Pathol., 76, 81, 10.1006/jipa.2000.4941

Tamez-Guerra, 2006, Differences in susceptibility and physiological fitness of Mexican field Trichoplusia ni strains exposed to Bacillus thuringiensis, J. Econ. Entomol., 99, 937, 10.1093/jee/99.3.937

Vadlamudi, 1995, Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem., 270, 5490, 10.1074/jbc.270.10.5490

Wang, 2007, Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni, Appl. Environ. Microbiol., 73, 1199, 10.1128/AEM.01834-06

Xu, 2005, Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol., 71, 948, 10.1128/AEM.71.2.948-954.2005

Zhang, 2007, Sequence variation in cadherin alleles from the cabbage looper, Trichoplusia ni