Paralinearization of the Muskat Equation and Application to the Cauchy Problem
Tóm tắt
We paralinearize the Muskat equation to extract an explicit parabolic evolution equation having a compact form. This result is applied to give a simple proof of the local well-posedness of the Cauchy problem for rough initial data, in homogeneous Sobolev spaces $$\dot{H}^1(\mathbb {R})\cap \dot{H}^s(\mathbb {R})$$ with $$s>3/2$$. This paper is essentially self-contained and does not rely on general results from paradifferential calculus.
Tài liệu tham khảo
Alazard, T., Burq, N., Zuily, C.: On the water waves equations with surface tension. Duke Math. J. 158(3), 413–499, 2011
Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198, 71–163, 2014
Alinhac, S., Gérard, P.: Pseudo-differential operators and the Nash-Moser theorem. Graduate Studies in Mathematics, 82. American Mathematical Society, Providence, RI, 2007. viii+168 pp.
Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer (2011). Springer, Heidelberg 2011
Besov, O.V.: Investigation of a class of function spaces in connection with imbedding and extension theorems. Trudy Mat. Inst. Steklov. 60, 42–81, 1961
Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4)14(2), 209–246, 1981
Bourdaud, G., Meyer, Y.: Le calcul fonctionnel sous-linéaire dans les espaces de Besov homogènes. Rev. Mat. Iberoamericana22(2), 725–746, 2006
Cameron, S.: Global well-posedness for the \(2d\) Muskat problem with slope less than \(1\). Anal. PDE12(4), 997–1022, 2019
Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F.: Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208(3), 805–909, 2013
Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F.: Splash singularities for the one-phase Muskat problem in stable regimes. Arch. Ration. Mech. Anal. 222(1), 213–243, 2016
Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F., López-Fernández, M.: Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. of Math. (2)175(2), 909–948, 2012
Castro, Á., Córdoba, D., Faraco, D.: Mixing solutions for the Muskat problem. 2016. arXiv:1605.04822
Castro, Á., Faraco, D., Mengual, F.: Degraded mixing solutions for the Muskat problem Calc. Var. Partial Differential Equations 58,(2), Art. 58. 2019
Arthur Cheng, C.H., Granero-Belinchón, R., Shkoller, S.: Well-posedness of the Muskat problem with \(H^2\) initial data. Adv. Math. 286, 32–104, 2016
Patel, N.: Robert Strain Large time decay estimates for the Muskat equation. Comm. Partial Differential Equations42(6), 977–999, 2017
Coifman, R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, Société Mathématique de France, Paris, 1978
Constantin, P., Córdoba, D., Gancedo, F., Rodríguez-Piazza, L., Strain, R.M.: On the Muskat problem: global in time results in 2D and 3D. Amer. J. Math. 138(6), 1455–1494, 2016
Constantin, P., Gancedo, F., Shvydkoy, R., Vicol, V.: Global regularity for 2D Muskat equations with finite slope. Ann. Inst. H. Poincaré Anal. Non Linéaire34(4), 1041–1074, 2017
Córdoba, A., Córdoba, D., Gancedo, F.: Interface evolution: the Hele-Shaw and Muskat problems. Ann. of Math. (2)173(1), 477–542, 2011
Córdoba, D., Lazar, O.: Global well-posedness for the 2d stable Muskat problem in \({H}^{\frac{3}{2}}\). arXiv:1803.07528
Córdoba, D., Gancedo, F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273(2), 445–471, 2007
Córdoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Rational Mech. Anal. 200(3), 725–746, 2011
Córdoba, D., Gómez-Serrano, J., Zlatoš, A.: A note on stability shifting for the Muskat problem. Philos. Trans. Roy. Soc. A373(2050), 20140278, 2015
Córdoba, D., Gómez-Serrano, J., Zlatoš, A.: A note on stability shifting for the Muskat problem II: Stable to Unstable and back to Stable. Anal. PDE10(2), 367–378, 2017
D’Ancona, P.: A short proof of commutator estimates. J. Fourier Anal. Appl., to appear
Deng, F., Lei, Z., Lin, F.: On the Two-Dimensional Muskat Problem with Monotone Large Initial Data. Comm. Pure Appl. Math. 70(6), 1115–1145, 2017
Escher, J., Matioc, B.V.: On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results. Z. Anal. Anwend. 30(2), 193–218, 2011
Fröster, C., Székelyhidi Jr., L.: Piecewise constant subsolutions for the Muskat problem. Commun. Math. Phys. 363(3), 1051–1080, 2018
Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations Comm. Pure Appl. Math. 41(7), 891–907, 1988
Gancedo, F.: A survey for the Muskat problem and a new estimate. SeMA J. 74(1), 21–35, 2017
Granero-Belinchón, R., Lazar, O.: Growth in the Muskat problem. Math. Model. Nat. Phenom. 15, 1–23, 2020
Lannes, D.: Well-posedness of the water waves equations. J. Amer. Math. Soc. 18(3), 605–654, 2005
Lannes, D.: Water waves: mathematical analysis and asymptotics, volume 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI 2013
Granero-Belinchón, R., Shkoller, S.: Well-posedness and decay to equilibrium for the Muskat problem with discontinuous permeability. Trans. Amer. Math. Soc., to appear
Lemarié-Rieusset, P.-G.: The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton, FL 2016
Li, D.: On Kato-Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35(1), 23–100, 2019
Matioc, B.V.: Viscous displacement in porous media: the Muskat problem in 2D Trans. Amer. Math. Soc. 370(10), 7511–7556, 2018
Matioc, B.V.: The Muskat problem in 2D: equivalence of formulations, well-posedness, and regularity results. Anal. PDE12(2), 281–332, 2019
Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series. Edizioni della Normale, Pisa 2008
Meyer, Y.: Régularité des solutions des équations aux dérivées partielles non linéaires (d’après Bony). Bourbaki Seminar, Vol. 1979/80, pp. 293-302, Lecture Notes in Math., 842, Springer, Berlin-New York, 1981
Muskat, M.: Two fluid systems in porous media. The encroachment of water into an oil sand. Physics5(9), 250–264, 1934
Muskat, M.: Physical Principles of Oil Production. McGraw-Hill, New York 1949
Narasimhan, T.N.: Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas. Water Resources Research34(1), 33–46, 1998
Otto, F.: Viscous fingering: an optimal bound on the growth rate of the mixing zone. SIAM J. Appl. Math. 57(4), 982–990, 1997
Peetre, J.: New thoughts on Besov spaces. Duke Univ. Math. Series I. Mathematics Department, Duke University, Durham, NC 1976
Shnirelman, A.: Microglobal analysis of the Euler equations. J. Math. Fluid Mech. 7(3), 387–396, 2005
Székelyhidi Jr., L.: Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. (4)45(3), 491–509, 2012