Parafermion vertex operator algebras

Chongying Dong1,2, Qing Wang3
1School of Mathematics, Sichuan University, Chengdu, China
2Department of Mathematics, University of California, Santa Cruz, USA
3School of Mathematical Sciences, Xiamen University, Xiamen, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe T, Buhl G, Dong C. Rationality, regularity and C 2-cofiniteness. Trans Am Math Soc, 2004, 356: 3391–3402

Blumenhagen R, Eholzer W, Honecker A, Hornfeck K, Hübel R. Coset realization of unifying W-algebras. Inter J Mod Phys A, 1995, 10: 2367–2430

Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83: 3068–3071

Dong C. Vertex algebras associated with even lattices. J Algebra, 1993, 160: 245–265

Dong C, Griess Jr R. Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Michigan Math J, 2002, 50: 227–239

Dong C, Griess Jr R, Hoehn G. Framed vertex operator algebras, codes and the moonshine module. Commun Math Phys, 1998, 193: 407–448

Dong C, Lam C H, Wang Q, Yamada H. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323: 371–381

Dong C, Lam C H, Yamada H. W-algebras in lattice vertex operator algebras. In: Doebner H -D, Dobrev V K, eds. Lie Theory and Its Applications in Physics VII. Proc of the VII International Workshop, Varna, Bulgaria, 2007. Bulgarian J Phys, 2008, 35(suppl): 25–35

Dong C, Lam C H, Yamada H. W-algebras related to parafermion algebras. J Algebra, 2009, 322: 2366–2403

Dong C, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math, Vol 112. Boston: Birkhäuser, 1993

Dong C, Li H, Mason G. Regularity of rational vertex operator algebra. Adv Math, 1997, 312: 148–166

Dong C, Li H, Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310: 571–600

Dong C, Li H, Mason G. Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun Math Phys, 2000, 214: 1–56

Dong C, Li H, Mason G, Norton S P. Associative subalgebras of Griess algebra and related topics. In: Ferrar J, Harada K, eds. Proc Conf Monster and Lie Algebras, Ohio State University, May 1996. Berlin: de Gruyter, 1998

Dong C, Wang Q. The structure of parafermion vertex operator algebras: general case. Commun Math Phys, 2010, 299: 783–792

Dong C, Wang Q. On C 2-cofiniteness of parafermion vertex operator algebras. J Algebra, 2011, 328: 420–431

Dong C, Zhang W. Rational vertex operator algebras are finitely generated. J Algebra, 2008, 320: 2610–2614

Frenkel I, Kac V. Basic representations of affine Lie algebras and dual resonance models. Invent Math, 1980, 62: 23–66

Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Applied Math, Vol 134. Boston: Academic Press, 1988

Frenkel I, Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math J, 1992, 66: 123–168

Gaberdiel M, Neitzke A. Rationality, quasirationality, and finite W-algebras. Commun Math Phys, 2003, 238: 147–194

Gepner D. New conformal field theory associated with Lie algebras and their partition functions. Nucl Phys B, 1987, 290: 10–24

Goddard P, Kent A, Olive D. Unitary representations of the Virasoro and super-Virasoro algebras. Commun Math Phys, 1986, 103: 105–119

Kac V G. Infinite-dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990

Lepowsky J, Li H. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227. Boston: Birkhäuser, 2004

Lepowsky J, Primc M. Structure of the Standard Modules for the Affine Lie Algebra A 1 (1) . Contemporary Math, Vol 46. Providence: Am Math Soc, 1985

Lepowsky J, Wilson R L. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc Natl Acad Sci USA, 1981, 78: 7245–7248

Lepowsky J, Wilson R L. The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent Math, 1984, 77: 199–290

Li H. Some finiteness properties of regular vertex operator algebras. J Algebra, 1999, 212: 495–514

Meurman A, Primc M. Vertex operator algebras and representations of affine Lie algebras. Acta Appl Math, 1996, 44: 207–215

Segal G. Unitary representations of some infinite-dimensional groups. Commun Math Phys, 1981, 80: 301–342

Wang W. Rationality of Virasoro vertex operator algebras. Inter Math Res Not, 1993, 7: 197–211

Zamolodchikov A B, Fateev V A. Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ZN-symmetric statistical systems. Sov Phys JETP, 1985, 62: 215–225

Zhu Y. Modular Invariance of characters of vertex operator algebras. J Am Math Soc, 1996, 9: 237–302