Parafermion vertex operator algebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abe T, Buhl G, Dong C. Rationality, regularity and C 2-cofiniteness. Trans Am Math Soc, 2004, 356: 3391–3402
Blumenhagen R, Eholzer W, Honecker A, Hornfeck K, Hübel R. Coset realization of unifying W-algebras. Inter J Mod Phys A, 1995, 10: 2367–2430
Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83: 3068–3071
Dong C, Griess Jr R. Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Michigan Math J, 2002, 50: 227–239
Dong C, Griess Jr R, Hoehn G. Framed vertex operator algebras, codes and the moonshine module. Commun Math Phys, 1998, 193: 407–448
Dong C, Lam C H, Wang Q, Yamada H. The structure of parafermion vertex operator algebras. J Algebra, 2010, 323: 371–381
Dong C, Lam C H, Yamada H. W-algebras in lattice vertex operator algebras. In: Doebner H -D, Dobrev V K, eds. Lie Theory and Its Applications in Physics VII. Proc of the VII International Workshop, Varna, Bulgaria, 2007. Bulgarian J Phys, 2008, 35(suppl): 25–35
Dong C, Lam C H, Yamada H. W-algebras related to parafermion algebras. J Algebra, 2009, 322: 2366–2403
Dong C, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math, Vol 112. Boston: Birkhäuser, 1993
Dong C, Li H, Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310: 571–600
Dong C, Li H, Mason G. Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun Math Phys, 2000, 214: 1–56
Dong C, Li H, Mason G, Norton S P. Associative subalgebras of Griess algebra and related topics. In: Ferrar J, Harada K, eds. Proc Conf Monster and Lie Algebras, Ohio State University, May 1996. Berlin: de Gruyter, 1998
Dong C, Wang Q. The structure of parafermion vertex operator algebras: general case. Commun Math Phys, 2010, 299: 783–792
Dong C, Wang Q. On C 2-cofiniteness of parafermion vertex operator algebras. J Algebra, 2011, 328: 420–431
Dong C, Zhang W. Rational vertex operator algebras are finitely generated. J Algebra, 2008, 320: 2610–2614
Frenkel I, Kac V. Basic representations of affine Lie algebras and dual resonance models. Invent Math, 1980, 62: 23–66
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Applied Math, Vol 134. Boston: Academic Press, 1988
Frenkel I, Zhu Y. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math J, 1992, 66: 123–168
Gaberdiel M, Neitzke A. Rationality, quasirationality, and finite W-algebras. Commun Math Phys, 2003, 238: 147–194
Gepner D. New conformal field theory associated with Lie algebras and their partition functions. Nucl Phys B, 1987, 290: 10–24
Goddard P, Kent A, Olive D. Unitary representations of the Virasoro and super-Virasoro algebras. Commun Math Phys, 1986, 103: 105–119
Lepowsky J, Li H. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227. Boston: Birkhäuser, 2004
Lepowsky J, Primc M. Structure of the Standard Modules for the Affine Lie Algebra A 1 (1) . Contemporary Math, Vol 46. Providence: Am Math Soc, 1985
Lepowsky J, Wilson R L. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations. Proc Natl Acad Sci USA, 1981, 78: 7245–7248
Lepowsky J, Wilson R L. The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent Math, 1984, 77: 199–290
Meurman A, Primc M. Vertex operator algebras and representations of affine Lie algebras. Acta Appl Math, 1996, 44: 207–215
Segal G. Unitary representations of some infinite-dimensional groups. Commun Math Phys, 1981, 80: 301–342
Zamolodchikov A B, Fateev V A. Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ZN-symmetric statistical systems. Sov Phys JETP, 1985, 62: 215–225