Para-Sasakian manifolds and $$*$$-Ricci solitons

D. G. Prakasha1, P. Veeresha1
1Department of Mathematics, Karnatak University, Dharwad 580003, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alekseevsky, D.V., Cortes, V., Galaev, A., Leistner, T.: Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635, 23–69 (2009)

Bejan, C.L., Crasmareanu, M.: Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Ann. Glob. Anal. Geom. https://doi.org/10.1007/s10455-014-9414-4

Blaga, A.M., Crasmareanu, M.C.: Torse-forming $$\eta $$-Ricci solitons in almost paracontact $$\eta $$-Einstein geometry. Filomat 31(2), 499–504 (2017)

Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S.: Three-dimensional Lorentzian homogeneous Ricci solitons. Isr. J. Math. 188, 385–403 (2012)

Calvaruso, G., Fino, A.: Four-dimensional pseudo-Riemannian homogeneous Ricci solitons. Int. J. Geom. Methods Mod. Phys. 12, 1550056 (2015). (21 pages)

Calvaruso, G., Perrone, D.: Geometry of H-paracontact metric manifolds. Publ. Math. Debrecen 86, 325–346 (2015)

Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80, 15–25 (2014)

Calvaruso, G., Perrone, A.: Ricci solitons in three-dimensional paracontact geometry. J. Geom. Phys. 98, 1–12 (2015)

Cao, H.-D.: Recent progress on Ricci solitons. Adv. Lect. Math. (ALM) 11, 1–38 (2009). arXiv:0908:2006v1

Cappelletti Montono, B., Kupeli Erken, I., Murathan, C.: Nullity conditions in paracontact geometry. Differ. Geom. Appl. 30, 665–693 (2012)

Ghosh, A., Patra, D.S.: $$*$$-Ricci soliton within the frame-work of Sasakian and $$(\kappa, \mu )$$-contact manifold. Int. J. Geom. Methods Mod. Phys. (2018). https://doi.org/10.1142/S0219887818501207

Ghosh, A., Sharma, R.: Sasakian metric as a Ricci soliton and related results. J. Geom. Phys. 75, 1–6 (2014)

Hamada, T.: Real hypersurfaces of complex space forms in terms of Ricci $$^*$$ - tensor. Tokyo J. Math. 25, 473–483 (2002)

Hamilton, R.S.: The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, pp. 237–262. Amer. Math. Soc., Providence (1988)

Ivanov, S., Vassilev, D., Zamkovoy, S.: Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata 144, 79–100 (2010)

Kaimakamis, G., Panagiotidou, K.: $$*$$-Ricci solitons of real hypersurfaces in non-flat complex space forms. J. Geom. Phys. 86, 408–413 (2014)

Kaneyuki, S., Williams, F.L.: Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 99, 173–187 (1985)

Pina, R., Tenenblat, K.: On solutions of the Ricci curvature and the Einstein equation. Isr. J. Math. 171, 61–76 (2009)

Prakasha, D.G., Hadimani, B.S.: $$\eta $$-Ricci solitons on para-Sasakian manifolds. J. Geom. 108, 383–392 (2017)

Sharma, R., Ghosh, A.: Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group. Int. J. Geom. Methods Mod. Phys. 8, 149–154 (2011)

Srivastava, S.K., Srivastava, K.: Harmonic maps and para-Sasakian geometry. Matematicki Vesnik 69(3), 153–163 (2017)

Tachibana, S.: On almost-analytic vectors in almost Kahlerian manifolds. Tohoku Math. J. 11, 247–265 (1959)

Venkatesha, Naik, D.M.: Certain results on $$K$$-paracontact and paraSasakian manifolds. J. Geom. 108, 939–952 (2017)

Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970)

Zamkovoy, S.: Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36(1), 37–60 (2009)