Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters

Journal of Analysis and Testing - Tập 3 Số 1 - Trang 19-36 - 2019
Yingchun Li1, Rongyan He1, Yan Niu1, Fēi Li1
1The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sun Y, Yang T, Leak RK, Chen JH, Zhang F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targ. 2017;16:326–38.

Weiner WJ. Early diagnosis of Parkinson’s disease and initiation of treatment. Rev Neurol Dis. 2008;5:54–5.

Silverstone L. Method and apparatus for treatment of neurodegenerative diseases including depression, mild cognitive impairment, and dementia. US; 2011.

Listed N. Neurotransmitters in central nervous system disease. Lancet. 1982;2:913.

Lamine A, Létourneau M, Doan ND, Maucotel J, Couvineau A, Vaudry H, et al. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced invivo cardiovascular side effects in a Parkinson’s disease model. Neuropharmacology. 2015;108:440–50.

Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–55.

Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp. 2004;64:99–106.

Kavruk M, Ozalp VC, Oktem HA. Portable bioactive paper-based sensor for quantification of pesticides. J Anal Methods Chem. 2013;2013:932946.

Park DJ, Choi JH, Lee WJ, Um SH, Oh BK. Selective electrochemical detection of dopamine using reduced graphene oxide sheets-gold nanoparticles modified electrode. J Nanosci Nanotechnol. 2017;17:8012–8.

Shen Y, Cheng L, Guan Q, Li H, Lu J, Wang X. Development and validation of a liquid chromatography tandem mass spectrometry method for the measurement of urinary catecholamines in diagnosis of pheochromocytoma. Biomed Chromatogr. 2017;31:e4003.

Dossi N, Toniolo R, Piccin E, Susmel S, Pizzariello A, Bontempelli G. Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanal. 2013;25:2515–22.

Sharief M. Lumbar puncture and CSF examination. Medicine. 2004;32:44–6.

Flik G, Folgering JH, Cremers TI, Westerink BH, Dremencov E. Interaction between brain histamine and serotonin, norepinephrine, and dopamine systems: in vivo microdialysis and electrophysiology study. J Mol Neurosci. 2015;56:320–8.

Holdsworth MT, Raisch DW, Winter SS, Frost JD, Moro MA, Doran NH, et al. Pain and distress from bone marrow aspirations and lumbar punctures. Ann Pharmacother. 2003;37:17–22.

Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens Actuators B Chem. 2015;211:403–18.

Deng W, Wang L, Song S, Zuo X. Biosensors in POCT application. Prog Chem. 2016;28:1341–50.

Asbeck BSV, Hoidal J, Vercellotti GM, Schwartz BA, Moldow CF, Jacob HS. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science. 1985;227:756–9.

Shah P, Zhu X, Li CZ. Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn. 2013;13:83–91.

Oborny NJ, Melo Costa EE, Suntornsuk L, Abreu FC, Lunte SM. Evaluation of a portable microchip electrophoresis fluorescence detection system for the analysis of amino acid neurotransmitters in brain dialysis samples. Anal Sci. 2016;32:35–40.

Maughan N, Nguyen LM, Gamagedara S. Microfluidic Separation and electrochemical detection of serotonin using a portable Lab-on-a-Chip device. Anal Bioanal Electrochem. 2015;7:1–11.

Chen X, Zheng N, Chen S, Ma Q, Chen X, Zheng N, et al. Fluorescent detection of dopamine based on nitrogen-doped graphene quantum dots and visible paper based test strips. Anal Methods. 2017;9:2246–51.

Sanguansap Y, Ruangpornvisuti V, Tuntulani T, Promarak V, Tomapatanaget B. Highly promising discrimination of various catecholamines using ratiometric fluorescence probes with intermolecular self-association of two sensing elements. RSC Adv. 2015;5:78468–75.

Liu C, Gomez FA. A microfluidic paper-based device to assess acetylcholinesterase activity. Electrophoresis. 2017;38:1002–6.

Chandra S, Siraj S, Wong DKY. Recent advances in biosensing for neurotransmitters and disease biomarkers using microelectrodes. Chemelectrochem. 2017;4:822–33.

Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioelectron. 2018;102:540–52.

Darwin R, Dimitri I, Pierre A, Andreas M. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem. 2002;74:2623–36.

Martinez AW, Phillips ST, Whitesides GM, Carrilho E, Chem A. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82:3–10.

da Costa TH, Song E, Tortorich RP, Choi JW. A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J Solid State Sci Technol. 2015;4:S3044–7.

Feng QM, Cai M, Shi C-G, Bao N, Gu HY. Integrated paper-based electroanalytical devices for determination of dopamine extracted from striatum of rat. Sens Actuators B Chem. 2015;209:870–6.

Zan X, Bai H, Wang C, Zhao F, Duan H. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells. Chemistry. 2016;22:5204–10.

Raj M, Gupta P, Goyal RN, Shim YBJS. Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens Actuators B Chem. 2017;239:993–1002.

Li Z, Liu H, Ouyang C, Wee WH, Cui X, Lu TJ, et al. Pen-based writing: recent advances in pen-based writing electronics and their emerging applications. Adv Funct Mater. 2016;26:157.

Guntupalli B, Liang P, Lee JH, Yang Y, Yu H, Canoura J, et al. Ambient filtration method to rapidly prepare highly conductive, paper-based porous gold films for electrochemical biosensing. ACS Appl Mater Interfaces. 2015;7:27049–58.

Kong Q, Wang Y, Zhang L, Xu C, Yu J. Highly sensitive microfluidic paper-based photoelectrochemical sensing platform based on reversible photo-oxidation products and morphologypreferable multi-plate ZnO nanolowers. Biosens Bioelectron. 2018;110:58.

Ruecha N, Lee J, Chae H, Cheong H, Soum V, Preechakasedkit P, et al. Paper-based digital microfluidic chip for multiple electrochemical assay operated by a wireless portable control system. Adv Mater Technol. 2017;2:1600267.

Punjiya M, Moon CH, Chen Y, Sonkusale S. Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:307–10.

Tian T, Bi Y, Xu X, Zhu Z, Yang C. Integrated paper-based microfluidic devices for point-of-care testing. Anal Methods. 2018;10:3567–81.

Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.

Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30:887–98.

Graziane N, Dong Y. Measuring presynaptic release probability: electrophysiological analysis of synaptic transmission. New York: Springer; 2016. p. 133–43.

Carver JM. The “Chemical imbalance” in mental health problems. 2002.

Shell W, Charuvastra E. Composition and method to augment and sustain neurotransmitter production. US; 2009.

Studer L, Psylla M, Bühler B, Evtouchenko L, Vouga CM, Leenders KL, et al. Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: a tool to assess dopaminergic tissue prior to grafting. Brain Res Bull. 1996;41:143–50.

Liu L, Li Q, Li N, Ling J, Liu R, Wang Y, et al. Simultaneous determination of catecholamines and their metabolites related to Alzheimer’s disease in human urine. J Sep Sci. 2011;34:1198–204.

Puumala T, Sirvio J. Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience. 1998;83:489–99.

Jakel RJ, Maragos WF. Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci. 2000;23:239–45.

Rattanarat P, Dungchai W, Siangproh W, Chailapakul O, Henry CS. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal Chim Acta. 2012;744:1–7.

Davis KLK, Kahn RS, Ko G, Davis Davidson M, Kahn RS, Davidson M. Dopamine and schizophrenia: a reconceptualization. Am J Psychiatry. 1991;148:1474–86.

Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science. 1995;270:644–6.

Curtis BM, O’Keefe JH Jr. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

Andersen LW, Berg KM, Saindon BZ, Massaro JM, Raymond TT, Berg RA, et al. Time to epinephrine and survival after pediatric in-hospital cardiac arrest. JAMA. 2015;314:802–10.

Whybrow PC Jr, Prange AJ. A hypothesis of thyroid-catecholamine-receptor interaction: its relevance to affective illness. Arch Gen Psychiatry. 1981;38:106–13.

Şanlı N, Tague SE, Lunte C. Analysis of amino acid neurotransmitters from rat and mouse spinal cords by liquid chromatography with fluorescence detection. J Pharm Biomed Anal. 2015;107:217–22.

Li Z, You Z, Li M, Pang L, Cheng J, Wang L. Protective effect of resveratrol on the brain in a rat model of epilepsy. Neurosci Bull. 2017;33:273–80.

Bowery NG, Smart TG. GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol. 2006;147:S109–19.

Rajendra S, Schofield PR. Molecular mechanisms of inherited startle syndromes. Trends Neurosci. 1995;18:80–2.

Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, et al. Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Rep. 2017;18:905–17.

Euler V. Action of adrenaline, acetylcholine and other substances on nerve-free vessels (human placenta). J Physiol. 2017;93:129–43.

Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

Hidaka A, Azuma YT, Nakajima H, Takeuchi T. Nitric oxide and carbon monoxide act as inhibitory neurotransmitters in the longitudinal muscle of C57BL/6 J mouse distal colon. J Pharmacol Sci. 2010;112:231–41.

Grossman A, Costa A, Forsling ML, Jacobs R, Kostoglou-Athanassiou I, Nappi G, et al. Gaseous neurotransmitters in the hypothalamus: the roles of nitric oxide and carbon monoxide in neuroendocrinology. Horm Metab Res. 1997;29:477–82.

Snyder SH, Jaffrey SR, Zakhary R. Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res Brain Res Rev. 1998;26:167–75.

Rőszer T. The biology of subcellular nitric oxide. Netherlands: Springer; 2012.

Kumar M, Kumar P. Protective effect of spermine against pentylenetetrazole kindling epilepsy induced comorbidities in mice. Neurosci Res. 2017;120:8–17.

Lourenço CF, Ledo A, Rui MB, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radical Biol Med. 2017;108:668–82.

Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57:585–630.

Montecot C, Seylaz J, Pinard E. Carbon monoxide regulates cerebral blood flow in epileptic seizures but not in hypercapnia. NeuroReport. 1998;9:2341–6.

Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017;74:1391–412.

Lee M, Sparatore A, Del Soldato P, Mcgeer E, Mcgeer PL. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia. 2010;58:103–13.

Eto K, Ogasawara M, Umemura K, Nagai Y, Kimura H. Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci. 2002;22:3386–91.

Scott AP, Ratcliffe JG, Rees LH, Landon J, Bennett HPJ, Lowry PJ, et al. Pituitary peptide. Nat New Biol. 1973;244:65–7.

Gillis RA, Helke CJ, Hamilton BL, Norman WP, Jacobowitz DM. Evidence that substance P is a neurotransmitter of baro- and chemoreceptor afferents in nucleus tractus solitarius. Brain Res. 1980;181:476–81.

Otsuka M. Neurotransmitter Functions of Mammalian Tachykinins: Substance P and neurokinin A: Birkhäuser Basel, Switzerland. 1995. pp. 189–97.

Schutte IW, Hollestein KB, Akkermans LM, Kroese AB. Evidence for a role of cholecystokinin as neurotransmitter in the guinea-pig enteric nervous system. Neurosci Lett. 1997;236:155–8.

Taylor GT, Manzella F. Kappa opioids, salvinorin A and major depressive disorder. Current Neuropharmacology, 2016;14,165–76.

Holland PR. Biology of neuropeptides: orexinergic involvement in primary headache disorders. Headache J Head Face Pain. 2017;57:76–88.

Russo AF. Overview of neuropeptides: awakening the senses? Headache J Head Face Pain. 2017;57:37–46.

Harrison S, Geppetti P. Substance P. Int J Biochem Cell Biol. 2001;33:555–76.

Namjou K, Roller CB, Mcmillen G. Breath-analysis using mid-infrared tunable laser spectroscopy. Sensors. 2007;2007:1337–40.

Mostafalu P, Mostafalu S, Mann J, Punjiya M, Sonkusale S. Highly selective electrochemical approach for detection of DA, AA and 5-HT using material diversity with chemometrics on paper. Transducers—2015. International conference on solid-state sensors, actuators and microsystems 2015. pp. 1479–82.

Domingues DS, Crevelin EJ, de Moraes LA, Hallak JEC, Souza de Crippa JA, Queiroz MEC. Simultaneous determination of amino acids and neurotransmitters in plasma samples from schizophrenic patients by hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Sep Sci. 2015;38:780–7.

Li W, Qian D, Li Y, Bao N, Gu H, Yu C. Fully-drawn pencil-on-paper sensors for electroanalysis of dopamine. J Electroanal Chem. 2016;769:72–9.

Trouillon R, Gijs MAM. Paper-based polymer electrodes for bioanalysis and electrochemistry of neurotransmitters. ChemPhysChem. 2018;19:1164–72.

Loewenstein D, Stake C, Cichon M. Validation of Using Fingerstick Blood Sample with i-STAT POC Testing Device for Cardiac Troponin I Assay. Cureus (2012);4(9):e115

Punjiya M, Mostafalu P, Sonkusale S. Low-cost paper-based electrochemical sensors with CMOS readout IC. Biomedical Circuits and Systems Conference. 2014. pp. 324–7.

Ferrer DG, García AG, Peris-Vicente J, Gimeno-Adelantado JV, Esteve-Romero J. Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography. Anal Bioanal Chem. 2015;407:9009–18.

Tsai TC, Huang FH, Chen JJJ. Selective detection of dopamine in urine with electrodes modified by gold nanodendrite and anionic self-assembled monolayer. Sens Actuators B Chem. 2013;181:179–86.

Pankratov D, González-Arribas E, Blum Z, Shleev S. Tear based bioelectronics. Electroanal. 2016;28:1250–66.

Van Haeringen NJ. Clinical biochemistry of tears. Surv Ophthalmol. 1981;26:84–96.

Thomas N, Lähdesmäki I, Parviz BA. A contact lens with an integrated lactate sensor. Sens Actuators B Chem. 2012;162:128–34.

Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron. 2011;26:3290–6.

Andoralov V, Shleev S, Arnebrant T, Ruzgas T. Flexible micro(bio)sensors for quantitative analysis of bioanalytes in a nanovolume of human lachrymal liquid. Anal Bioanal Chem. 2013;405:3871–9.

Kagie A, Bishop DK, Burdick J, La Belle JT, Dymond R, Felder R, et al. Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanal. 2008;20:1610–4.

Nicolodi M, Bianco ED. Sensory neuropeptides (substance P, calcitonin gene-related peptide) and vasoactive intestinal polypeptide in human saliva: their pattern in migraine and cluster headache. Cephalalgia. 1990;10:39–50.

Holsinger FC, Bui DT. Anatomy, function, and evaluation of the salivary glands. Berlin Heidelberg: Springer; 2007. p. 1–16.

Kennedy B, Dillon E, Mills PJ, Ziegler MG. Catecholamines in human saliva. Life Sci. 2001;69:87–99.

Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci Rep. 2016;6:33637.

Zan X, Fang Z, Wu J, Xiao F, Huo F, Duan H. Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. Biosens Bioelectron. 2013;49:71–8.

Nechaeva D, Shishov A, Ermakov S, Bulatov A. A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta. 2018;183:290–6.

Hinz M, Stein A, Uncini T. Urinary neurotransmitter testing: considerations of spot baseline norepinephrine and epinephrine. Open Access J Urol. 2011;3:19–24.

Davletbaeva P, Falkova M, Safonova E, Moskvin L, Bulatov A. Flow method based on cloud point extraction for fluorometric determination of epinephrine in human urine. Anal Chim Acta. 2016;911:69–74.

Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing—xPOCT. Trends Biotechnol. 2017;35:728–42.

Nontawong N, Amatatongchai M, Wuepchaiyaphum W, Chairam S, Pimmongkol S, Panich S, et al. Fabrication of a three-dimensional electrochemical paper-based device (3D-ePAD) for individual and simultaneous detection of ascorbic acid, dopamine and uric acid. Int J Electrochem Sci. 2018;13:6940–57.

Pradela-Filho LA, Araujo DAG, Takeuchi RM, Santos AL. Nail polish and carbon powder: an attractive mixture to prepare paper-based electrodes. Electrochim Acta. 2017;258:786–92.

Cai W, Lai T, Du H, Ye J. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sens Actuators B Chem. 2014;193:492–500.

Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, et al. Flexible electronics based on micro/nanostructured paper. Adv Mater. 2018;30:1801588.

Bollström R, Pettersson F, Dolietis P, Preston J, Osterbacka R, Toivakka M. Impact of humidity on functionality of on-paper printed electronics. Nanotechnology. 2014;25:094003.

Kuretake T, Kawahara S, Motooka M, Uno S. An electrochemical gas biosensor based on enzymes immobilized on chromatography paper for ethanol vapor detection. Sensors. 2017;17:281.

Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul OJB. Bioelectronics Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron. 2014;52:13–9.

Nantaphol S, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS. Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal Chem. 2017;89:4100–7.

Punjiya M, Moon CH, Matharu Z, Nejad HR, Sonkusale S. A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics. Analyst. 2018;143:1059–64.

Ahv S, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435–50.

Tortorich RP, Song E, Choi JW. Inkjet-printed carbon nanotube electrodes with low sheet resistance for electrochemical sensor applications. J Electrochem Soc. 2013;161:B3044–8.

Qin H, Zhu Z, Ji W, Zhang M. Carbon nanotube paper-based electrode for electrochemical detection of chemicals in rat microdialysate. Electroanalysis. 2018;30:1022–7.

Ji D, Liu Z, Liu L, Low SS, Lu Y, Yu X, et al. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron. 2018;119:55–62.

Pereira SV, Bertolino FA, Fernándezbaldo MA, Messina GA, Salinas E, Sanz MI, et al. A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst. 2011;136:4745–51.

Mettakoonpitak J, Boehle K, Nantaphol S, Teengam P, Adkins JA, Srisa-Art M, et al. Electrochemistry on paper-based analytical devices: a review. Electroanal. 2016;28:1420–36.

Gomez FJV, Martín A, Silva MF, Escarpa A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta. 2015;182:1–7.

Ge L, Wang S, Yu J, Li N, Ge S, Yan M. Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv Funct Mater. 2013;23:3115–23.

Das SR, Nian Q, Cargill AA, Hondred JA, Ding S, Saei M, et al. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale. 2016;8:15870–9.

Zilkha E, Koshy A, Obrenovitch TP, Bennetto HP, Symon L. Amperometric biosensors for on-Line monitoring of extracellular glucose and glutamate in the brain. Anal Lett. 1994;27:453–73.

Hunter GW, Xu JC, Biaggi-Labiosa AM, Laskowski D, Dutta PK, Mondal SP, et al. Smart sensor systems for human health breath monitoring applications. J Breath Res. 2011;5:037111.

Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: emerging themes and applications. Anal Chem. 2016;89:71–91.

Nazari MH, Mazhabjafari H, Leng L, Guenther A, Genov R. CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE J Sel Top Sign Process. 2013;7:338–48.

Starke K. Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol. 1977;77:1–124.

Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure. Am J Cardiol. 1978;41:233–43.

Casadio S, Lowdon JW, Betlem K, Ueta JT, Foster CW, Cleij TJ, et al. Development of a novel flexible polymer-based biosensor platform for the thermal detection of noradrenaline in aqueous solutions. Chem Eng J. 2017;315:459–68.

Meltzer CC, Smith G, Dekosky ST, Pollock BG, Mathis CA, Moore RY, et al. Serotonin in aging, late-life Depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacol. 1998;18:407–30.

Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta. 2009;165:373–9.

Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84:253–6.

Chen P, Li Y, Ma J, Huang J, Chen C, Chang H. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices. Sci Rep. 2016;6:24882.

Li L, Zhang Y, Liu F, Su M, Liang L, Ge S, et al. Real-time visual determination of the flux of hydrogen sulphide using a hollow-channel paper electrode. Chem Commun. 2015;51:14030–3.

Liu M, Wu L, Sabine M, Yang G. Hydrogen sulfide signaling axis as a target for prostate cancer therapeutics. Prostate Cancer. 2016;2016:8108549.

Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.