Paper-Based Biochip Assays and Recent Developments: A Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–726 (2007).
Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234–2237 (2012).
Camilli, A. & Bassler, B.L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).
Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71, 121–138 (2000).
Hu, C. et al. Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5, 4760–4768 (2013).
Qui, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917–928 (2006).
Hong, C.C. & Yu, P.B. Application of small molecule BMP inhibitors in physiology and disease. Cytokine Growth Factor Rev. 20, 409–418 (2009).
Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).
Park, M., Jung, H., Jeong, Y. & Jeong, K.-H. Plasmonic Schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11, 438–443 (2017).
Choy, C.K.M., Benzie, I.F.F. & Cho, P. Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Innest. Ophthalmol. Visual Sci. 41, 3293–3298 (2000).
Kim, E.-J. et al. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: an SPM analysis of F-FDG PET. Eur J. Neurol. 19, 488–493 (2012).
Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. 58, 345–352 (1954).
Masaoka, S., Ohe, T. & Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75, 18–22 (1993).
Shin, J.H., Park, J., Kim, S.H. & Park, J.-K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014).
Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U. S. A. 105, 19606–19611 (2008).
Yu, J., Ge, L., Huang, J., Wang, S. & Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11, 1286–1291 (2011).
Shin, J.H. & Park, J.-K. Functional packaging of lateral flow strip allows simple delivery of multiple reagents for multistep assays. Anal. Chem. 88, 10374–10378 (2016).
Teerinen, T., Lappalainen, T. & Erho, T. A paper-based lateral flow assay for morphine. Anal. Bioanal. Chem. 406, 5955–5965 (2014).
Miao, J. et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557–9567 (2011).
Yang, J. et al. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377–384 (2011).
Wilcox, A.J., Baird, D.D. & Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796–1799 (1999).
Polavarapu, L., Porta, A.L., Novikov, S.M., Coronado-Puchau, M. & Liz-Marzán, L.M. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10, 3065–3071 (2014).
Lee, C.H., Hankus, M.E., Tian, L., Pellegrino, P.M. & Singamaneni, S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 83, 8953–8958 (2011).
Yu, W.W. and White, I.M. Chromatographic separation and detection of target analytes from complex samples using inkjet-printed SERS substrates. Analyst 138, 3679–3686 (2013).
Yu, W.W. and White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020–1025 (2013).
Liu, H. and Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133, 17564–17566 (2011).
Liu, H., Siang, Y., Lu, Y. & Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 51, 6925–6928 (2012).
Martinez, R.V., Fish, C.R., Chen, X. & Whitesides, G.M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).
Ge, L., Wang, S., Song, X., Ge, S. & Yu, J. 3D origamibased multifunction-integrated immunodevice: lowcost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12, 3150–3158 (2012).
Dungchai, W., Chailapakul, O. & Henry, C.S. A lowcost, simple, and rapid fabrication method for paperbased microfluidics using wax screen-printing. Analyst 136, 77–82 (2011).
Lu, Y., Shi, W., Jiang, L., Qin, J. & Lin, B. Rapid prototyping of paper-based microfluidics with wax for lowcost, portable bioassay. Electrophoresis 30, 1497–1500 (2009).
Carrilho, E., Martinez, A.W., Whitesides, G.M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009).
Lewis, G.G., DiTucci, M.J., Baker, M.S. & Phillips, S.T. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12, 2630–2633 (2012).
Lu, Y., Shi, W., Qin, J. & Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem. 82, 329–335 (2010).
Martinez, A.W. et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699–3707 (2008).
Park, J. & Park, J.-K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sens. Actuators B 246, 1049–1055 (2017).
Oh, Y., Lee, H., Son, S.Y., Kim, S.J. & Kim, P. Capililarity ion concentration polarization for spontaneous biomolecular preconcentration mechnism. Biomicrofluidics 10, 014102 (2016).
Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173–177 (2017).
Raston, N.H.A., Nguyen, V.T. & Gu, M.B. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosensors and Bioelectronics 93, 21–25 (2017).
Hwang, J., Lee, S., Choo, J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enteroxin B. Nanoscale 8, 11418 (2016).
Park, J., Shin, J.H. & Park, J.-K. Experimental analysis of porosity and permeability in pressed paper. Micromachines 7, 48 (2016).
Park, J., Shin, J.H. & Park, J.-K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem. 88, 3781–3788 (2016).
Delaney, J.L. & Hogan, C.F., Tian, J. & Shen, W. Electrogenerated chemiluminescence detection in paperbased microfluidic sensors. Anal. Chem. 83, 1300–1306 (2011).
Ge, L., Yu, J., Ge, S. & Yan, M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 31, 212–218 (2012).
Wang, S. et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012).
Fletcher, J. Filter-paper dot-immunobinding assay for detection of spiroplasma-citri. Appl. Environ. Microbiol. 53, 183–184 (1987).
Heberling, R.L. & Kalter, S.S. Rapid dot-immunobinding assay on nitrocellulose for viral antibodies. J. Clin. Microbiol. 23, 109–113 (1986).
Yoon, H.-J., Lee, E.-S., Kang, M., Jeong, Y. & Park, J.-H. In vivo multi-photon luminescence imaging of cerebral vasculature and blood-brain barrier integrity using gold nanoparticles. J. Mater. Chem. B 3, 2935–2938 (2015).
Stiles, P.L., Dieringer, J.A., Shah, N.C. & Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).
Chang, T.-W. et al. Bifunctional nano lycurgus cup array plasmonic sensor for colorimetric sensing and surface-enhanced Raman spectroscopy. Adv. Opt. Mater. 3, 1397–1404 (2015).
Seok, T.J., Jamshidi, A., Eggleston, M. & Wu, M.C. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap. Opt. Exp. 21, 16561–16569 (2013).
Chen, H., Kou, X., Yang, Z., Ni, W. & Wang, J. Shapeand size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233–5237 (2008).
Lei, D.Y. et al. Geometry dependence of surface plasmon polarition lifetimes in nanohole arrays. ACS Nano 4, 432–438 (2010).
Jensen, T.R. et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999).
Zhang, J. et al. Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett. 8, 1179–1186 (2009).
Sugawa, K. et al. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano 7, 9997–10010 (2013).
Hong, S.G., Lee, M.Y., Jackson, A.O. & Lee, L.P. Bioinspired optical antennas: gold plant viruses. Light: Sci. Appl. 4, e267 (2015).
Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface-enhanced Raman scattering. Small 11, 2487–2492 (2015).
Wu, D. & Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265, 234–238 (2003).
Luo, Z. and Fang, Y. SERS of C60/C70 on gold-coated filter paper on filter film influenced by the gold thickness. J. Colloid Interface Sci. 283, 459–463 (2005).
Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamide dissolution on the absorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloid Surf., A 420, 46–52 (2013).
Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 392, 237–246 (2013).
Ngo, Y.H., Then, W.L., Shen, W. & Garnier, G. Gold nanoparticles paper as a SERS bio-diagnostic platform. J. Colloid Interface Sci. 409, 59–65 (2013).
Ballerini, D.R. et al. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598–1605 (2014).
Tian, L. et al. Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84, 9928–9934 (2012).
Abbas, A. et al. Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 85, 3977–3983 (2013).
Tadepalli, S. et al. Peptide-functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmoic paper devices. Sci. Rep. 5, 16206 (2015).
Schmucker, A.L. et al. Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Adv. 6, 4136–4144 (2016).
Ross, M.B. et al. Structure-function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789–20797 (2016).
Wang, C., Liu, B. & Dou, X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators B 231, 357–364 (2016).
Cheng, M.-L., Tsai, B.-C. & Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 708, 89–96 (2011).
Rajapandiyan, P. & Yang, J. Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J. Raman Spectrosc. 45, 574–580 (2014).
Li, Y. et al. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493–500 (2016).
Zhang, K., Qing, J., Gao, H., Ji, J. & Liu, B. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta 162, 52–56 (2017).
Yu, W.W. & White, I.M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626–9630 (2010).
Berger, A.G., Restaino, S.M. & White, I.M. Verticalflow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 949, 59–66 (2017).
Zhang, W. et al. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 6, 2066–2071 (2014).
Zhang, K. et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces 7, 16767–16774 (2015).