Pan-cancer analysis of the metabolic reaction network
Tài liệu tham khảo
Agren, 2012, Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT, PLoS Comput. Biol., 8, 10.1371/journal.pcbi.1002518
Agren, 2014, Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling, Mol. Syst. Biol., 10, 721, 10.1002/msb.145122
Aspuria, 2014, Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism, Cancer Metabol., 2, 21, 10.1186/2049-3002-2-21
Bansal, 2003, Arginine availability, arginase, and the immune response, Curr. Opin. Clin. Nutr. Metab. Care, 6, 223, 10.1097/00075197-200303000-00012
Barabasi, 2004, Network biology: understanding the cell's functional organization, Nat. Rev. Genet., 5, 101, 10.1038/nrg1272
Benjamini, 2001, Controlling the false discovery rate in behavior genetics research, Behav. Brain Res., 125, 279, 10.1016/S0166-4328(01)00297-2
Björnson, 2015, Stratification of hepatocellular carcinoma patients based on acetate utilization, Cell Rep., 13, 2014, 10.1016/j.celrep.2015.10.045
Boroughs, 2015, Metabolic pathways promoting cancer cell survival and growth, Nat. Cell Biol., 17, 351, 10.1038/ncb3124
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Cairns, 2011, Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11, 85, 10.1038/nrc2981
Damiani, 2017, A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect, PLoS Comput. Biol., 13, 10.1371/journal.pcbi.1005758
DeBerardinis, 2016, Fundamentals of cancer metabolism, Science advances, 2, 10.1126/sciadv.1600200
Diaz-Uriarte, 2007, GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest, BMC Bioinf., 8, 328, 10.1186/1471-2105-8-328
Dray, 2007, The ade4 package: implementing the duality diagram for ecologists, J. Stat. Softw., 22, 1
Dutkowski, 2013, A gene ontology inferred from molecular networks, Nat. Biotechnol., 31, 38, 10.1038/nbt.2463
Gatto, 2015, Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism, Sci. Rep., 5, 10738, 10.1038/srep10738
Gatto, 2016, In search for symmetries in the metabolism of cancer, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 23
Gatto, 2014, Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma, Proc. Natl. Acad. Sci., 201319196
Gatto, 2016, Systematic analysis reveals that cancer mutations converge on deregulated metabolism of arachidonate and xenobiotics, Cell Rep., 16, 878, 10.1016/j.celrep.2016.06.038
Ghaffari, 2015, Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling, Sci. Rep., 5, 8183, 10.1038/srep08183
Ghesquiere, 2014, Metabolism of stromal and immune cells in health and disease, Nature, 511, 167, 10.1038/nature13312
Hand, 2001, A simple generalisation of the area under the ROC curve for multiple class classification problems, Mach. Learn., 45, 171, 10.1023/A:1010920819831
Hensley, 2016, Metabolic heterogeneity in human lung tumors, Cell, 164, 681, 10.1016/j.cell.2015.12.034
Hu, 2013, Heterogeneity of tumor-induced gene expression changes in the human metabolic network, Nat. Biotechnol., 31, 522, 10.1038/nbt.2530
Hu, 2010, Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proc. Natl. Acad. Sci., 107, 7455, 10.1073/pnas.1001006107
Law, 2014, voom: precision weights unlock linear model analysis tools for RNA-seq read counts, Genome Biol., 15, R29, 10.1186/gb-2014-15-2-r29
Li, 2002, Activities of arginase I and II are limiting for endothelial cell proliferation, Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, R64, 10.1152/ajpregu.2002.282.1.R64
Luengo, 2017, Targeting metabolism for cancer therapy, Cell chemical biology, 24, 1161, 10.1016/j.chembiol.2017.08.028
Mardinoglu, 2014, Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease, Nat. Commun., 5, 3083, 10.1038/ncomms4083
Mardinoglu, 2013, Genome-scale modeling of human metabolism–a systems biology approach, Biotechnol. J., 8, 985, 10.1002/biot.201200275
Mardinoglu, 2015, New paradigms for metabolic modeling of human cells, Curr. Opin. Biotechnol., 34, 91, 10.1016/j.copbio.2014.12.013
Meacham, 2013, Tumour heterogeneity and cancer cell plasticity, Nature, 501, 328, 10.1038/nature12624
Monk, 2014, Optimizing genome-scale network reconstructions, Nat. Biotechnol., 32, 447, 10.1038/nbt.2870
Nebert, 2006, The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis, Nature review cancer, 947, 10.1038/nrc2015
Nilsson, 2014, Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer, Nat. Commun., 5, 3128, 10.1038/ncomms4128
O'Brien, 2015, Using genome-scale models to predict biological capabilities, Cell, 161, 971, 10.1016/j.cell.2015.05.019
Pavlova, 2016, The emerging hallmarks of cancer metabolism, Cell Metabol., 23, 27, 10.1016/j.cmet.2015.12.006
Peng, 2018, Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers, Cell Rep., 23, 255, 10.1016/j.celrep.2018.03.077
Robinson, 2010, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26, 139, 10.1093/bioinformatics/btp616
Schultz, 2016, Reconstruction of tissue-specific metabolic networks using CORDA, PLoS Comput. Biol., 12, 10.1371/journal.pcbi.1004808
Smyth, 2004, Linear models and empirical bayes methods for assessing differential expression in microarray experiments, Stat. Appl. Genet. Mol. Biol., 3, 1, 10.2202/1544-6115.1027
Uhlén, 2015, Tissue-based map of the human proteome, Science, 347, 1260419, 10.1126/science.1260419
Vlassis, 2014, Fast reconstruction of compact context-specific metabolic network models, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003424
Wang, 2010, Eicosanoids and cancer, Nat. Rev. Cancer, 10, 181, 10.1038/nrc2809
Wang, 2012, Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE, BMC Syst. Biol., 6, 153, 10.1186/1752-0509-6-153
Wilkerson, 2010, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinformatics, 26, 1572, 10.1093/bioinformatics/btq170
Yamada, 2011, iPath2. 0: interactive pathway explorer, Nucleic Acids Res., 39, W412, 10.1093/nar/gkr313
Yizhak, 2015, Modeling cancer metabolism on a genome scale, Mol. Syst. Biol., 11, 817, 10.15252/msb.20145307
Yizhak, 2014, Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer, Elife, 3, 10.7554/eLife.03641
Yizhak, 2014, A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration, Mol. Syst. Biol., 10, 744, 10.15252/msb.20134993
Yuneva, 2012, The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type, Cell Metabol., 15, 157, 10.1016/j.cmet.2011.12.015
Zielinski, 2017, Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism, Sci. Rep., 7, 41241, 10.1038/srep41241