Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các hạt vi nang Palladium và Platinum được hỗ trợ bởi chitosan aerogel như một chất xúc tác quang trong sự phân hủy axit formic
Journal of Polymers and the Environment - Trang 1-12 - 2023
Tóm tắt
Cuộc khủng hoảng ô nhiễm môi trường do nhiên liệu hóa thạch dẫn đến việc các ngành công nghiệp phải tìm kiếm một nguồn năng lượng sạch thay thế để cứu lấy tương lai của thế giới. Trong số các ứng viên, hydro được coi là một nhiên liệu quý giá nhờ vào quy trình sản xuất dễ dàng, hàm lượng năng lượng cao và có thể được đốt cháy theo hướng thân thiện với môi trường. Báo cáo này nhấn mạnh việc sản xuất hydro thông qua ba phát hiện mới, bao gồm việc sử dụng (1) chitosan aerogel như một chất hỗ trợ xanh cho sự phát triển hydro quang xúc tác từ axit formic, và (2) các hạt vi nang palladium/platinum như một chất xúc tác hybrid mới trong sự phân hủy của axit formic hoặc natri formate. Sự phân hủy axit formic và formate bằng các hạt vi nang palladium/platinum hỗ trợ trên chitosan aerogel đã mang lại hydro với tần suất quay là 0.007, và 0.11 s−1, tương ứng, mà không cần bất kỳ chất phụ gia nào trong điều kiện môi trường. Kết quả cho thấy rằng pH cơ bản giúp tăng cường cả sự tạo ra hydro và độ ổn định của chất xúc tác quang. Tính chất xanh của chất hỗ trợ chitosan, điều kiện phản ứng nhẹ nhàng, và khả năng tái sử dụng của chất xúc tác quang cũng được xác định là những ưu điểm của báo cáo này.
Từ khóa
#hydro #chitosan aerogel #palladium #platinum #xúc tác quang #axit formic #tái sử dụngTài liệu tham khảo
Yue M, Lambert H, Pahon E et al (2021) Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew Sustain Energy Rev 146:111180. https://doi.org/10.1016/j.rser.2021.111180
Keshipour S, Asghari A (2022) A review on hydrogen generation by phthalocyanines. Int J Hydrogen Energy 47:12865–12881. https://doi.org/10.1016/j.ijhydene.2022.02.058
Khandaker S, Das S, Hossain MT et al (2021) Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. J Mol Liq 344:117795. https://doi.org/10.1016/j.molliq.2021.117795
Yuranov I, Autissier N, Sordakis K et al (2018) Heterogeneous catalytic reactor for hydrogen production from formic acid and its use in polymer electrolyte fuel cells. ACS Sustain Chem Eng 6:6635–6643. https://doi.org/10.1021/acssuschemeng.8b00423
Eyvari-Ashnak F, Keshipour S (2023) Amines functionalities on chitosan boasting photocatalytic activity of cobalt(II)-phthalocyanine in water-splitting. Mol Catal 534:112820. https://doi.org/10.1016/j.mcat.2022.112820
Al-Azmi A, Keshipour S (2020) Dimaval as an efficient ligand for binding Ru(III) on cross-linked chitosan aerogel: synthesis, characterisation and catalytic investigation. Cellulose 27:895–904. https://doi.org/10.1007/s10570-019-02838-7
Lee M, Chen BY, Den W, Appl S, Lee M, Chen B-Y, Den W (2015) Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl Sci (Basel) 5:1272–1283
Chen X, Xu X-J, Zheng X-C et al (2018) Chitosan supported palladium nanoparticles: the novel catalysts for hydrogen generation from hydrolysis of ammonia borane. Mater Res Bull 103:89–95. https://doi.org/10.1016/j.materresbull.2018.03.013
Jia H, Chen X, Liu C-Y et al (2018) Ultrafine palladium nanoparticles anchoring graphene oxide-ionic liquid grafted chitosan self-assembled materials: the novel organic-inorganic hybrid catalysts for hydrogen generation in hydrolysis of ammonia borane. Int J Hydrogen Energy 43:12081–12090. https://doi.org/10.1016/j.ijhydene.2018.04.156
Kayan DB, Koçak D, İlhan M, Koca A (2017) Electrocatalytic hydrogen production on a modified pencil graphite electrode. Int J Hydrogen Energy 42:2457–2463. https://doi.org/10.1016/j.ijhydene.2016.04.190
Lin TC, De La Torre U, Hejazi A et al (2021) Unimolecular and bimolecular formic acid decomposition routes on dispersed Cu nanoparticles. J Catal 404:814–831. https://doi.org/10.1016/j.jcat.2021.08.049
Khan Z, Bashir O, AL-Thabaiti SA, Rafiquee MZA (2021) Synthesis of ternary nanoparticles using the complexation-reduction method and their catalytic activities for hydrogen generation from formic acid. J Mol Liq 323:115009. https://doi.org/10.1016/j.molliq.2020.115009
Chen T, Chen J, Wu J et al (2023) Atomic-layer-deposition derived pt subnano clusters on the (110) facet of hexagonal Al2O3 plates: efficient for formic acid decomposition and water gas shift. ACS Catal 13:887–901. https://doi.org/10.1021/acscatal.2c04784
Deng Q-F, Zhang Z-F, Cui F-J, Jia L-H (2017) Highly dispersed Pd-MnOx nanoparticles supported on graphitic carbon nitride for hydrogen generation from formic acid-formate mixtures. Int J Hydrogen Energy 42:14865–14871. https://doi.org/10.1016/j.ijhydene.2017.04.294
Bi Q-Y, Lin J-D, Liu Y-M et al (2016) Dehydrogenation of formic acid at room temperature: boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew Chem Int Ed Engl 55:11849–11853. https://doi.org/10.1002/anie.201605961
Bulushev DA, Beloshapkin S, Plyusnin PE et al (2013) Vapour phase formic acid decomposition over PdAu/γ-Al2O3 catalysts: Effect of composition of metallic particles. J Catal 299:171–180. https://doi.org/10.1016/j.jcat.2012.12.009
Qin Y-L, Wang J, Meng F-Z et al (2013) Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. Chem Commun (Camb) 49:10028–10030. https://doi.org/10.1039/c3cc46248j
Ojeda M, Iglesia E (2009) Formic acid dehydrogenation on au-based catalysts at near-ambient temperatures. Angew Chem Int Ed Engl 48:4800–4803. https://doi.org/10.1002/anie.200805723
Xu L, Yao F, Luo J et al (2017) Facile synthesis of amine-functionalized SBA-15-supported bimetallic Au–Pd nanoparticles as an efficient catalyst for hydrogen generation from formic acid. RSC Adv 7:4746–4752. https://doi.org/10.1039/c6ra26793a
Mousavi-Salehi S, Keshipour S, Ahour F (2023) Gold supported on graphene oxide/silica photocatalyst for hydrogen generation from formic acid. J Phys Chem Solids 176:111239. https://doi.org/10.1016/j.jpcs.2023.111239
Zhang J, She Y (2020) Unveiling the decomposition mechanism of formic acid on Pd/WC(0001) surface by using density function theory. Cuihua Xuebao/Chin J Catal 41:415–425. https://doi.org/10.1016/s1872-2067(19)63463-7
Corredor J, Rivero MJ, Rangel CM et al (2019) Comprehensive review and future perspectives on the photocatalytic hydrogen production: Comprehensive review and future perspectives on the photocatalytic hydrogen production. J Chem Technol Biotechnol 94:3049–3063. https://doi.org/10.1002/jctb.6123
Xu P, Bernal-Juan FD, Lefferts L (2021) Effect of oxygen on formic acid decomposition over pd catalyst. J Catal 394:342–352. https://doi.org/10.1016/j.jcat.2020.10.032
Hafeez S, Sanchez F, Al-Salem SM et al (2021) Decomposition of additive-free formic acid using a Pd/C catalyst in flow: experimental and CFD modelling studies. Catalysts 11:341. https://doi.org/10.3390/catal11030341
Isahak WNRW, Kamaruddin MN, Ramli ZAC et al (2022) Decomposition of formic acid and acetic acid into hydrogen using graphitic carbon nitride supported single metal catalyst. Sustainability 14:13156. https://doi.org/10.3390/su142013156
Al-Azmi A, Keshipour S (2022) New bidental sulfur-doped graphene quantum dots modified with gold as a catalyst for hydrogen generation. J Coll Interfac Sci 612:701–709. https://doi.org/10.1016/j.jcis.2022.01.005
Keshipour S, Mohammad-Alizadeh S, Razeghi MH (2022) Copper phthalocyanine@graphene oxide as a cocatalyst of TiO2 in hydrogen generation. J Phys Chem Solids 161:110434. https://doi.org/10.1016/j.jpcs.2021.110434
Keshipour S, Mohammad-Alizadeh S (2021) Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Sci Rep 11:16148. https://doi.org/10.1038/s41598-021-95382-z
Al-Azmi A, Keshipour S (2021) Carbon-doping as efficient strategy for improving photocatalytic activity of polysilicon supported pd in hydrogen evolution from formic acid. Polym (Basel) 13:3919. https://doi.org/10.3390/polym13223919
Li Z, Shao L, Ruan Z et al (2018) Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions. Carbohydr Polym 193:221–227. https://doi.org/10.1016/j.carbpol.2018.04.003
Chen X, Yang H, Zhong Z, Yan N (2017) Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem 19:2783–2792. https://doi.org/10.1039/c7gc00089h
Kumirska J, Czerwicka M, Kaczyński Z et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636. https://doi.org/10.3390/md8051567
Yusuf M, Kim Y, Jun Park H et al (2023) TiC-Supported ruthenium nanoparticles as an efficient electrocatalyst for the hydrogen evolution reaction. Inorg Chem Commun 147:110267. https://doi.org/10.1016/j.inoche.2022.110267
Park Y, Yusuf M, Muthuchamy N et al (2022) Pd–Ni(OH)2 nanocatalyst on Ketjen black carbon as a potential alternative to commercial Pt-catalysts for oxygen reduction reactions. Mater Sci Semicond Process 152:107116. https://doi.org/10.1016/j.mssp.2022.107116
Yusuf M, Hira SA, Lim H et al (2021) Core–shell Cu2S:NiS2@C hybrid nanostructure derived from a metal–organic framework with graphene oxide for photocatalytic synthesis of N-substituted derivatives. J Mater Chem A Mater Energy Sustain 9:9018–9027. https://doi.org/10.1039/d1ta00159k
Yusuf M, Song S, Park S, Park KH (2021) Multifunctional core-shell Pd@Cu on MoS2 as a visible light-harvesting photocatalyst for synthesis of disulfide by S S coupling. Appl Catal A Gen 613:118025. https://doi.org/10.1016/j.apcata.2021.118025
Yusuf M, Nallal M, Nam KM et al (2019) Palladium-loaded core-shell nanospindle as potential alternative electrocatalyst for oxygen reduction reaction. Electrochim Acta 325:134938. https://doi.org/10.1016/j.electacta.2019.134938
Woo H, Kim E, Kim J-H et al (2017) Shape and composition control of monodisperse hybrid Pt-CoO nanocrystals by controlling the reaction kinetics with additives. Sci Rep. https://doi.org/10.1038/s41598-017-04211-9
He J, Chen D, Li N et al (2022) Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO2 sphere as an advanced nanocatalyst for highly efficient toluene oxidation. Green Energy Environ 7:1349–1360. https://doi.org/10.1016/j.gee.2021.03.002
Dang D, Zou H, Xiong Z et al (2015) High-performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a pt shell layer on carbon-supported pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach. ACS Catal 5:4318–4324. https://doi.org/10.1021/acscatal.5b00030
Wang LJ, Zhang J, Zhao X et al (2015) Palladium nanoparticle functionalized graphene nanosheets for Li–O2batteries: enhanced performance by tailoring the morphology of the discharge product. RSC Adv 5:73451–73456. https://doi.org/10.1039/c5ra11312a
Kása Z, Gyulavári T, Veréb G et al (2017) Novel applications and future perspectives of nanocomposites. Nanocomposites for visible light-induced photocatalysis. Springer International Publishing, Heidelberg, pp 333–398
Gazsi A, Bánsági T, Solymosi F (2011) Decomposition and reforming of formic acid on supported au catalysts: production of CO-free H2. J Phys Chem C Nanomater Interfac 115:15459–15466. https://doi.org/10.1021/jp203751w
Navlani-García M, Martis M, Lozano-Castelló D et al (2015) Investigation of pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catal Sci Technol 5:364–371. https://doi.org/10.1039/c4cy00667d
Wu Y, Wen M, Navlani-García M et al (2017) Palladium nanoparticles supported on titanium-doped graphitic carbon nitride for formic acid dehydrogenation. Chem Asian J 12:860–867. https://doi.org/10.1002/asia.201700041
Li Y, Hu Y, Peng S et al (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C Nanomater Interfac 113:9352–9358. https://doi.org/10.1021/jp901505j
Li Y, Tang L, Peng S et al (2012) Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution. CrystEngComm 14:6974. https://doi.org/10.1039/c2ce25838b