Paleosecular variation record from Pleistocene-Holocene lava flows in southern Colombia

Physics of the Earth and Planetary Interiors - Tập 332 - Trang 106926 - 2022
Wellington P. de Oliveira1, Gelvam A. Hartmann1, Jairo F. Savian2, Giovanny Nova3, Mauricio Parra3, Andrew J. Biggin4, Ricardo I.F. Trindade5
1Instituto de Geociências, Universidade Estadual de Campinas, Rua Carlos Gomes 250, 13083-855 Campinas, SP, Brazil
2Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
3Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080 São Paulo, SP, Brazil
4Department of Earth, Ocean and Ecological Science, University of Liverpool, Liverpool L69 7ZE, UK
5Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, 05508-900, São Paulo, SP, Brazil

Tài liệu tham khảo

Aldana, 2011, Identification of magnetic minerals related to hydrocarbon authigenesis in Venezuelan oil fields using an alternative decomposition of isothermal remanence curves, Stud. Geophys. Geod., 55, 343, 10.1007/s11200-011-0019-0 Argus, 2011, Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophys. Geosyst., 12, 10.1029/2011GC003751 Aubert, 2013, Bottom-up control of geomagnetic secular variation by the Earth’s inner core, Nature, 502, 219, 10.1038/nature12574 Banerjee, 2005, Clustering on the unit hypersphere using von Mises-Fisher distributions, J. Mach. Learn. Res., 6, 1345 Bayona, 1994, vol. 1, 21 Bayona, 2020, Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks, 2 Biggin, 2008, Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic, Phys. Earth Planet. Inter., 169, 3, 10.1016/j.pepi.2008.07.004 Biggin, 2020, Quantitative estimates of average geomagnetic axial dipole dominance in deep geological time, Nat. Commun., 11, 1, 10.1038/s41467-020-19794-7 Bono, 2020, Covariant giant Gaussian process models with improved reproduction of palaeosecular variation, Geochem. Geophys. Geosyst., 21, 10.1029/2020GC008960 Brandt, 2020, Giant Gaussian process models of geomagnetic paleosecular variation: a directional outlook, Geophys. J. Int., 22, 1526, 10.1093/gji/ggaa258 Bustamante, 2016, Late Jurassic to early Cretaceous plutonism in the Colombian Andes: a record of long-term arc maturity, Bulletin, 128, 1762 Calvache, 2016, 193 Calvache, 1997, Stratigraphy and chronology of the Galeras volcanic complex, Colombia, J. Volcanol. Geotherm. Res., 77, 5, 10.1016/S0377-0273(96)00083-2 Cediel, 1981, Las formaciones Luisa, Payandé y Saldaña sus columnas estratigráficas características, Geología Norandina, 3, 11 Cepeda, 1985, Anotaciones acerca de la geología del volcán Galeras (Colombia), 1 Cochrane, 2014, Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea, Lithos, 190, 383, 10.1016/j.lithos.2013.12.020 Coe, 2006, Symmetry and stability of the geomagnetic field, Geophys. Res. Lett., 33, 10.1029/2006GL027903 Constable, 1988, Statistics of the geomagnetic secular variation for the past 5 m.y, J. Geophys. Res., 93, 11569, 10.1029/JB093iB10p11569 Constable, 2016, Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years, Earth Planet. Sci. Lett., 453, 78, 10.1016/j.epsl.2016.08.015 Cox, 1970, Latitude dependence of the angular dispersion of the geomagnetic field, Geophys. J. R. Astron. Soc., 20, 253, 10.1111/j.1365-246X.1970.tb06069.x Cox, 1975, The frequency of geomagnetic reversals and the symmetry of the nondipole field, Rev. Geophys., 13, 35, 10.1029/RG013i003p00035 Cromwell, 2013, Revised and updated paleomagnetic results from Costa Rica, Geochem. Geophys. Geosyst., 14, 3379, 10.1002/ggge.20199 Cromwell, 2018, PSV10: a global data set for 0–10 Ma time-averaged field and paleosecular variation studies, Geochem. Geophys. Geosyst., 19, 1533, 10.1002/2017GC007318 Davies, 2014, Insights from geodynamo simulations into long-term geomagnetic field behaviour, Earth Planet. Sci. Lett., 404, 238, 10.1016/j.epsl.2014.07.042 Day, 1977, Hysteresis properties of titanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260, 10.1016/0031-9201(77)90108-X de Oliveira, 2018, Behavior of the paleosecular variation during the Permian-Carboniferous Reversed Superchron and comparisons to the low reversal frequency intervals since Precambrian times, Geochem. Geophys. Geosyst., 19, 1035, 10.1002/2017GC007262 de Oliveira, 2021, Paleosecular variation and the time-averaged geomagnetic field since 10 Ma, Geochem. Geophys. Geosyst., 22, 10.1029/2021GC010063 Doubrovine, 2019, Latitude dependence of geomagnetic paleosecular variation and its relation to the frequency of magnetic reversals: observations from the Cretaceous and Jurassic, Geochem. Geophys. Geosyst., 20, 1240, 10.1029/2018GC007863 Dunlop, 1997 Duque Trujillo, 2010, Geología, geocronología y geoquímica del volcán Morasurco, Pasto, Colombia, Boletín de Ciencias de la Tierra, 27 Efron, 1993 Egli, 2021, Magnetic characterization of geologic materials with first-order reversal curves, 455 Elmaleh, 2004, Palaeosecular variation in Java and Bawean Islands (Indonesia) during the Brunhes chron, Geophys. J. Int., 157, 441, 10.1111/j.1365-246X.2004.02197.x Engbers, 2022, Low paleointensities and Ar/Ar ages from Saint Helena provide evidence for recurring magnetic field weaknesses in the South Atlantic, J. Geophys. Res. Solid Earth, 127, 10.1029/2021JB023358 Evans, 2003, Environmental magnetism: principles and applications of enviromagnetics, Elsevier., 86, 31 Fisher, 1953, Dispersion on a sphere, Proc. R. Soc. Lond. A, 217, 295, 10.1098/rspa.1953.0064 Fisher, 1987 Franco, 2019, Paleomagnetic evidence for inverse correspondence between the relative contribution of the axial dipole field and CMB heat flux for the past 270 Myr, Sci. Rep., 9, 1, 10.1038/s41598-018-36494-x Gautam, 2004, Environmental magnetic approach towards the quantification of pollution in Kathmandu urban area, Nepal, Phys. Chem. Earth Parts A/B/C, 29, 973, 10.1016/j.pce.2004.02.001 Haag, 1990, Self-reversal of natural remanent magnetization in andesitic pumice, Phys. Earth Planet. Inter., 65, 104, 10.1016/0031-9201(90)90079-D Handford, 2021, Analyzing Triassic and Permian geomagnetic paleosecular variation and the implications for ancient field morphology, Geochem. Geophys. Geosyst., 22, 10.1029/2021GC009930 Harrison, 2008, FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing, Geochem. Geophys. Geosyst., 9, 10.1029/2008GC001987 Hartmann, 2009, Time evolution of the South Atlantic magnetic anomaly, An. Acad. Bras. Cienc., 81, 243, 10.1590/S0001-37652009000200010 Heller, 1986, Reversed magnetization in pyroclastics from the 1985 eruption of Nevado del Ruiz, Colombia, Nature, 324, 241, 10.1038/324241a0 Heslop, 2020, Uncertainty propagation in hierarchical paleomagnetic reconstructions, J. Geophys. Res. Solid Earth, 125, 10.1029/2020JB019488 Hulot, 2010, The magnetic field of planet Earth, Space Sci. Rev., 152, 159, 10.1007/s11214-010-9644-0 Jaramillo, 2017, Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6° 35’ N, western flank of the central cordillera (Colombian Andes): magmatic record of arc growth and collision, J. S. Am. Earth Sci., 76, 460, 10.1016/j.jsames.2017.04.012 Johnson, 2015, The time-averaged field and paleosecular variation, vol. 5, 385 Johnson, 2008, Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows, Geochem. Geophys. Geosyst., 9, 10.1029/2007GC001696 Kerr, 1996, The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism, J. S. Am. Earth Sci., 9, 111, 10.1016/0895-9811(96)00031-4 Kirschvink, 1980, The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc., 62, 699, 10.1111/j.1365-246X.1980.tb02601.x Laj, 2015, Geomagnetic excursions, 5, 343 Lascu, 2018, The vortex state in geologic materials: a micromagnetic perspective, J. Geophys. Res. Solid Earth, 123, 7285, 10.1029/2018JB015909 Lattard, 2006, Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods, J. Geophys. Res. Solid Earth, 111, 10.1029/2006JB004591 Leonhardt, 2003, Absolute paleointensities and paleodirections of Miocene and Pliocene lavas from Fernando de Noronha, Brazil, Phys. Earth Planet. Inter., 139, 285, 10.1016/j.pepi.2003.09.008 Lhuillier, 2013, Statistical properties of reversals and chrons in numerical dynamos and implications for the geodynamo, Phys. Earth Planet. Inter., 220, 19, 10.1016/j.pepi.2013.04.005 McCourt, 1984, New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion, J. Geol. Soc., 141, 831, 10.1144/gsjgs.141.5.0831 McElhinny, 1996, The time-averaged paleomagnetic field 0–5 Ma, J. Geophys. Res., 101, 25007, 10.1029/96JB01911 McFadden, 1988, Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 93, 11583, 10.1029/JB093iB10p11583 Merrill, 2003, The geomagnetic axial dipole field assumption, Phys. Earth Planet. Inter., 139, 171, 10.1016/j.pepi.2003.07.016 Mojica, 1980, Observaciones acerca del estado actual del conocimiento de la Formación Payandé (Triásico Superior), Valle Superior del río Magdalena, Colombia, Geología Colombiana, 11, 67 Mojica, 2000, La fauna de amonitas del Triásico Tardío en el Miembro Chicalá (parte baja de la Formación Saldaña) en Payandé, Tolima, Colombia, Geología Colombiana, 25, 13 Monsalve Bustamante, 2020, The volcanic front in Colombia: segmentation and recent and historical activity, Geol. Colombia, 4, 97 Montes, 2019, Continental margin response to multiple arc-continent collisions: the northern Andes-Caribbean margin, Earth Sci. Rev., 198, 10.1016/j.earscirev.2019.102903 Ogg, 2020, Geomagnetic polarity time scale, 159 Opdyke, 2006, Time-averaged field at the equator: results from Ecuador, Geochem. Geophys. Geosyst., 7, 10.1029/2005GC001221 Opdyke, 2010, Equatorial paleomagnetic time-averaged field results from 0–5 Ma lavas from Kenya and the latitudinal variation of angular dispersion, Geochem. Geophys. Geosyst., 11, 10.1029/2009GC002863 Opdyke, 2015, Paleomagnetism of Miocene volcanics on Sao Tome: paleosecular variation at the equator and a comparison to its latitudinal dependence over the last 5 Myr, Geochem. Geophys. Geosyst., 16, 3870, 10.1002/2015GC005901 Panovska, 2017, An activity index for geomagnetic paleosecular variation, excursions, and reversals, Geochem. Geophys. Geosyst., 18, 1366, 10.1002/2016GC006668 Panovska, 2018, Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization, Geochem. Geophys. Geosyst., 19, 4757, 10.1029/2018GC007966 Panovska, 2019, One hundred thousand years of geomagnetic field evolution, Rev. Geophys., 57, 1289, 10.1029/2019RG000656 Pardo, 2019, Facing geological mapping at low-latitude volcanoes: the Doña Juana volcanic complex study-case, SW-Colombia, J. Volcanol. Geotherm. Res., 385, 46, 10.1016/j.jvolgeores.2018.04.016 Pindell, 2009, Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update, Geol. Soc. Lond., Spec. Publ., 328, 1, 10.1144/SP328.1 Ramos, 2009, 204, 31 Roberts, 2000, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res. Solid Earth, 105, 28461, 10.1029/2000JB900326 Roberts, 2014, Understanding fine magnetic particle systems through use of first-order reversal curve diagrams, Rev. Geophys., 52, 557, 10.1002/2014RG000462 Roberts, 2017, Resolving the origin of pseudo-single domain magnetic behavior, J. Geophys. Res. Solid Earth, 122, 9534, 10.1002/2017JB014860 Roberts, 2018, A critical appraisal of the “Day” diagram, J. Geophys. Res. Solid Earth, 123, 2618, 10.1002/2017JB015247 Rodríguez, 2018, Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the upper Magdalena Valley-Colombia: implications on the evolution of magmatic arcs in the NW Andes, J. S. Am. Earth Sci., 81, 10, 10.1016/j.jsames.2017.10.012 Rother, 2021, The Mag.Num core field model as a parent for IGRF-13, and the recent evolution of the South Atlantic anomaly, Earth Planets Space, 73, 1, 10.1186/s40623-020-01277-0 Salminen, 2007, Paleomagnetic and rock magnetic study of the Mesoproterozoic sill, Valaam island, Russian Karelia, Precambrian Res., 159, 212, 10.1016/j.precamres.2007.06.009 Sánchez-Duque, 2016, Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia, Geochem. Geophys. Geosyst., 17, 538, 10.1002/2015GC006149 Spikings, 2015, The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean large Igneous Province (290–75 Ma), Gondwana Res., 27, 95, 10.1016/j.gr.2014.06.004 Sprain, 2019, An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (QPM), Earth Planet. Sci. Lett., 526, 10.1016/j.epsl.2019.115758 Taboada, 2000, Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia), Tectonics, 19, 787, 10.1029/2000TC900004 Tarduno, 2015, Antiquity of the South Atlantic anomaly and evidence for top-down control on the geodynamo, Nat. Commun., 6, 1, 10.1038/ncomms8865 Tauxe, 2003, vol. 18 Tauxe, 2010 Tauxe, 2004, A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar?, 101 Terra-Nova, 2019, Preferred locations of weak surface field in numerical dynamos with heterogeneous core–mantle boundary heat flux: consequences for the South Atlantic anomaly, Geophys. J. Int., 217, 1179, 10.1093/gji/ggy519 Vandamme, 1994, A new method to determine paleosecular variation, Phys. Earth Planet. Inter., 85, 131, 10.1016/0031-9201(94)90012-4 Veikkolainen, 2014, Palaeosecular variation, field reversals and the stability of the geodynamo in the Precambrian, Geophys. J. Int., 199, 1515, 10.1093/gji/ggu348 Villagómez, 2011, Geochronology, geochemistry and tectonic evolution of the Western and central cordilleras of Colombia, Lithos, 125, 875, 10.1016/j.lithos.2011.05.003 Wagner, 2017, Transient slab flattening beneath Colombia, Geophys. Res. Lett., 44, 6616, 10.1002/2017GL073981 Zapata, 2016, U-Pb LA-ICP-MS geochronology and geochemistry of Jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): tectonic setting and regional correlations, Boletín de Geología, 38, 21, 10.18273/revbol.v38n2-2016001 Zapata, 2019, Cretaceous extensional and compressional tectonics in the northwestern Andes, prior to the collision with the Caribbean oceanic plateau, Gondwana Res., 66, 207, 10.1016/j.gr.2018.10.008 Zhao, 2017, Magnetic domain state diagnosis using hysteresis reversal curves, J. Geophys. Res. Solid Earth, 122, 4767, 10.1002/2016JB013683 Zijderveld, 1967, AC demagnetization of rocks: Analysis of results