Paleosalinity determination in ancient epicontinental seas: A case study of the T-OAE in the Cleveland Basin (UK)

Earth-Science Reviews - Tập 201 - Trang 103072 - 2020
Mariano N. Remírez1,2, Thomas J. Algeo2,3,4
1Centro de Investigaciones Geológicas (CONICET-UNLP), Diagonal 113 #275, B1904DPK La Plata, Argentina
2Department of Geology, University of Cincinnati, OH 45221-0013, Cincinnati, USA
3State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
4State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aberhan, 2001, Bivalve palaeobiogeography and the Hispanic Corridor: time of opening and effectiveness of a proto-Atlantic seaway, Paleogeograp. Paleoclimatol. Paleoecol., 165, 375, 10.1016/S0031-0182(00)00172-3

Algeo, 2004, Can marine anoxic events draw down the trace element inventory of seawater?, Geology, 32, 1057, 10.1130/G20896.1

Algeo, 2007, Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 256, 130, 10.1016/j.palaeo.2007.02.029

Algeo, 2019, Redox classification and calibration of redox thresholds in sedimentary systems, Geochim. Cosmochim. Acta

Algeo, 2006, Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, 10.1029/2004PA001112

Algeo, 2012, Paleoceanographic applications of trace-metal concentration data, Chem. Geol., 324, 6, 10.1016/j.chemgeo.2011.09.002

Algeo, 2009, Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation, Chem. Geol., 268, 211, 10.1016/j.chemgeo.2009.09.001

Algeo, 2007, Hydrographic conditions of the Devono-Carboniferous Northe American Seaway inferred from sedimentary Mo-TOC relationships, Palaeogeogr. Palaeoclimatol. Palaeoecol., 256, 204, 10.1016/j.palaeo.2007.02.035

Algeo, 2008, Modern and ancient epeiric seas and the super-estuarine circulation model of marine anoxia, 48, 7

Anderson, 2002, Occam's razor: Simplicity, complexity, and global geodynamics, Proc. Am. Philos. Soc., 146, 56

Arabas, 2017, Early Jurassic carbon and oxygen isotope records and seawater temperature variations: insights from marine carbonate and belemnite rostra (Pieniny Klippen Belt, Carpathians), Palaeogeogr. Palaeoclimatol. Palaeoecol., 485, 119, 10.1016/j.palaeo.2017.06.007

Atar, 2015

Atar, 2019, 34

Bailey, 2003, Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event, Earth Planet. Sci. Lett., 212, 307, 10.1016/S0012-821X(03)00278-4

Baranyi, 2016, Multiphase response of palynomorphs to the Toarcian oceanic anoxic event (Early Jurassic) in the Réka Valley section, Hungary, Rev. Palaeobot. Palynol., 235, 51, 10.1016/j.revpalbo.2016.09.011

Barnard, 1983, A review of geochemical data related to the northwest European gas province, 12, 19

Berner, 1984, Sedimentary pyrite formation: an update, Geochim. Cosmochim. Acta, 48, 605, 10.1016/0016-7037(84)90089-9

Berner, 1984, C/S method for distinguishing freshwater from marine sedimentary rocks, Geology, 12, 365, 10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2

Berner, 2013, Pyrite geochemistry in the Toarcian Posidonia Shale of southwest Germany: evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites, Sedimentology, 60, 548, 10.1111/j.1365-3091.2012.01350.x

Bjerrum, 2001, Numerical paleoceanography study of the early Jurassic Transcontinental Laurasian Seaway, Paleoceanography, 16, 390, 10.1029/2000PA000512

Bodin, 2010, Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 377, 10.1016/j.palaeo.2010.08.018

Boulila, 2017, A review of tempo and scale of the early Jurassic Toarcian OAE: implications for carbon cycle and sea level variations, Newsl. Stratigr., 50, 363, 10.1127/nos/2017/0374

Boulila, 2014, Astronomical calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the early Toarcian OAE, Earth Planet. Sci. Lett., 386, 98, 10.1016/j.epsl.2013.10.047

Bradshaw, 1992, Jurassic, 13, 107

Brazier, 2015, Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic), Earth Planet. Sci. Lett., 411, 164, 10.1016/j.epsl.2014.11.028

Breiter, 2013, Gallium and germanium geochemistry during magmatic fractionation and post-magmatic alteration in different types of granitoids: a case study from the Bohemian Massif (Czech Republic), Geol. Carpath., 64, 171, 10.2478/geoca-2013-0018

Calvert, 1993, Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record, Mar. Geol., 113, 67, 10.1016/0025-3227(93)90150-T

Caruthers, 2011, The significance of an early Jurassic (Toarcian) carbon-isotope excursion in Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada, Earth Planet. Sci. Lett., 307, 19, 10.1016/j.epsl.2011.04.013

Caruthers, 2013, The Pliensbachian–Toarcian (Early Jurassic) extinction, a global multi-phased event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 386, 104, 10.1016/j.palaeo.2013.05.010

Caruthers, 2014, The Pliensbachian–Toarcian (Early Jurassic) extinction: a North American perspective, 505, 225

Caswell, 2009, New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction, J. Geol. Soc. Lond., 166, 859, 10.1144/0016-76492008-0831

Chandler, 1992, Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate, Geol. Soc. Am. Bull., 104, 543, 10.1130/0016-7606(1992)104<0543:PCDTEJ>2.3.CO;2

Chen, 1997, Quaternary stratigraphy and trace-element indices of the Yangtze Delta, Eastern China, with special reference to marine transgressions, Quat. Res., 47, 181, 10.1006/qres.1996.1878

Clémence, 2006, Micropalaeontologic, geochemical and cyclostratigraphic approach for the timing of the early Toarcian oceanic anoxic event in the Paris Basin (GPF-Sancerre borehole), Volumina Jurassica, 4, 154

Cohen, 2004, Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering, Geology, 32, 157, 10.1130/G20158.1

Courtillot, 2003, On the ages of flood basalt events, Compt. Rendus Geosci., 335, 113, 10.1016/S1631-0713(03)00006-3

Damborenea, 2002, Jurassic evolution of Southern Hemisphere marine palaeobiogeographic units base on benthonic bivalves, Geobios, 35, 51, 10.1016/S0016-6995(02)00048-7

Danise, 2015, Environmental controls on Jurassic marine ecosystems during global warming, Geology, 43, 263, 10.1130/G36390.1

Dera, 2012, Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the early Toarcian anoxic event, Paleoceanography, 27, PA211, 10.1029/2012PA002283

Dera, 2009, Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites, Earth Planet. Sci. Lett., 286, 198, 10.1016/j.epsl.2009.06.027

Dera, 2011, Climatic ups and downs in a disturbed Jurassic world, Geology, 39, 215, 10.1130/G31579.1

Deyhle, 2005, The use and usefulness of boron isotopes in natural silicate–water systems, Phys. Chem. Earth, 30, 1038, 10.1016/j.pce.2005.04.003

Dickson, 2017, Molybdenum-isotope chemostratigraphy and paleoceanography of the Toarcian Oceanic Anoxic Event (Early Jurassic), Paleoceanography, 32, 813, 10.1002/2016PA003048

Dominik, 1993, Boron, beryllium and sulfur in Holocene sediments and peats of the Nile delta, Egypt: their use as indicators of salinity and climate, Chem. Geol., 104, 203, 10.1016/0009-2541(93)90151-8

Donahoe, 1998, Pore water geochemistry near the sediment-water interface of a zoned, freshwater wetland in the southeastern United States, Environ. Geol., 33, 143, 10.1007/s002540050234

Doveton, 2004, Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface, Chem. Geol., 206, 249, 10.1016/j.chemgeo.2003.12.027

Ernst, 2017, How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 478, 30, 10.1016/j.palaeo.2017.03.014

Fantasia, 2018, The Early Toarcian oceanic anoxic event: paleoenvironmental and paleoclimatic change across the Alpine Tethys (Switzerland), Glob. Planet. Chang., 162, 53, 10.1016/j.gloplacha.2018.01.008

Foley, 2017, Gallium, 1802, H1

Fonseca, 2018, Organic facies variability during the Toarcian Oceanic Anoxic event record of the Grands causes and Quercy basins (southern France), Int. J. Coal Geol., 190, 218, 10.1016/j.coal.2017.10.006

Frederickson, 1960, Geochemical method for determining paleosalinity, Clay Clay Miner., 8, 203, 10.1346/CCMN.1959.0080119

French, 2014, Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England, Earth Planet. Sci. Lett., 390, 116, 10.1016/j.epsl.2013.12.033

Fu, 2017, Continental weathering and palaeoclimatic changes through the onset of the early Toarcian oceanic anoxic event in the Qiangtang Basin, eastern Tethys, Palaeogeogr. Palaeoclimatol. Palaeoecol., 487, 241, 10.1016/j.palaeo.2017.09.005

Ghadeer, 2012, The role of event beds in the preservation of organic carbon in fine-grained sediments: analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England, Mar. Pet. Geol., 35, 309, 10.1016/j.marpetgeo.2012.01.001

Gibson, 2000, The response of Chesapeake Bay salinity to climate-induced changes in streamflow, Limnol. Oceanogr., 45, 1764, 10.4319/lo.2000.45.8.1764

Gröcke, 2011, An open ocean record of the Toarcian oceanic anoxic event, Solid Earth, 2, 245, 10.5194/se-2-245-2011

Hallam, 1997, Estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to Early Jurassic), J. Geol. Soc., 154, 773, 10.1144/gsjgs.154.5.0773

Hallam, 2001, A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge, Palaeogeogr. Palaeoclimatol. Palaeoecol., 167, 23, 10.1016/S0031-0182(00)00229-7

Harazim, 2013, Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian), Sedimentology, 60, 359, 10.1111/j.1365-3091.2012.01344.x

Harder, 1970, Boron content of sediments as a tool in facies analysis, Sediment. Geol., 4, 153, 10.1016/0037-0738(70)90009-6

Harries, 1999, The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts, Palaeogeogr. Palaeoclimatol. Palaeoecol., 154, 39, 10.1016/S0031-0182(99)00086-3

Hasegawa, 2010, Indicator of paleosalinity: sedimentary sulfur and organic carbon in the Jurassic–Cretaceous Tetori Group, central Japan, Island Arc, 19, 590, 10.1111/j.1440-1738.2010.00718.x

Hawkins, 1963, Distribution of trace elements between clays and zeolites formed by hydrothermal alteration of synthetic basalts, Geochim. Cosmochim. Acta, 27, 785, 10.1016/0016-7037(63)90043-7

Hecky, 1993, The steichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans, Limnol. Oceanogr., 38, 709, 10.4319/lo.1993.38.4.0709

Helz, 1996, Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence, Geochim. Cosmochim. Acta, 60, 3631, 10.1016/0016-7037(96)00195-0

Hermoso, 2014, Continental weathering and climatic changes inferred from clay mineralogy and paired carbon isotopes across the early to middle Toarcian in the Paris Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 399, 385, 10.1016/j.palaeo.2014.02.007

Hermoso, 2009, Global and local forcing of Early Toarcian seawater chemistry: a comparative study of different paleoceanographic settings (Paris and Lusitanian basins), Paleoceanography, 24, 10.1029/2009PA001764

Hermoso, 2009, Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin), Earth Planet. Sci. Lett., 277, 194, 10.1016/j.epsl.2008.10.013

Hermoso, 2012, Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change, Earth Planet. Sci. Lett., 319, 45, 10.1016/j.epsl.2011.12.021

Hermoso, 2013, Black shale deposition during Toarcian super-greenhouse driven by sea level, Clim. Past, 9, 2703, 10.5194/cp-9-2703-2013

Hess, 1999, Lower Jurassic Posidonia Shale of Southern Germany, 183

Hesselbo, 2008, Sequence stratigraphy and inferred relative sea-level change from the onshore British Jurassic, Proc. Geol. Assoc., 119, 19, 10.1016/S0016-7878(59)80069-9

Hesselbo, 1995, A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire, 105

Hesselbo, 1998, British Lower Jurassic sequence stratigraphy, 60, 561

Hesselbo, 2000, Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, 406, 392, 10.1038/35019044

Hesselbo, 2007, Carbon-isotope record of the early Jurassic (Toarcian) Oceanic Anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal), Earth Planet. Sci. Lett., 253, 455, 10.1016/j.epsl.2006.11.009

Hofer, 2013, Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies, Geosci. Front., 4, 449, 10.1016/j.gsf.2012.11.009

Holliday, 1999, Palaeotemperatures, thermal modelling and depth of burial studies in northern and eastern England, Proc. Yorks. Geol. Soc., 52, 337, 10.1144/pygs.52.4.337

Howarth, 1955, Domerian of the Yorkshire coast, Proc. Yorks. Geol. Soc., 30, 147, 10.1144/pygs.30.2.147

Howarth, 1962, The Jet Rock series and the Alum Shale series of the Yorkshire coast, Proc. Yorks. Geol. Soc., 33, 381, 10.1144/pygs.33.4.381

Howarth, 1973, The stratigraphy and ammonite fauna of the Upper Liassic Grey Shales of the Yorkshire coast, Bull. Br. Mus. Nat. Hist., 24, 235

Howarth, 2002, The Lower Lias of Robin Hood's Bay, Yorkshire, and the work of Leslie Bairstow, Bull. Nat. Hist. Museum, 58, 81

Hu, 2008, Upper crustal abundances of trace elements: a revision and update, Chem. Geol., 253, 205, 10.1016/j.chemgeo.2008.05.010

Huang, 2014, Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections, Gondwana Res., 25, 1348, 10.1016/j.gr.2013.06.023

Hunter, 2011, The occurrence of the pseudoplanktonic crinoids Pentacrinites and Seirocrinus from the Early Jurassic Toyora Group, western Japan, Paleontol. Res., 15, 12, 10.2517/1342-8144-15.1.012

Ikeda, 2018, Carbon cycle dynamics linked with Karoo-Ferrar volcanism and astronomical cycles during Plienbachian-Toarcian (Early Jurassic), Glob. Planet. Chang., 170, 163, 10.1016/j.gloplacha.2018.08.012

Janssen, 1999, A climatological data set of temperature and salinity for the Baltic Sea and the North Sea, Deutsche Hydrografische Zeitschrift, 51, 5, 10.1007/BF02933676

Jenkyns, 1985, The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts, Geol. Rundsch., 74, 505, 10.1007/BF01821208

Jenkyns, 1988, The early Toarcian (Jurassic) anoxic event-stratigraphic, sedimentary, and geochemical evidence, Am. J. Sci., 288, 101, 10.2475/ajs.288.2.101

Jenkyns, 2010, Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, 10.1029/2009GC002788

Johansson, 2018, The interplay between the eruption and weathering of Large Igneous Provinces and the deep-time carbon cycle, Geophys. Res. Lett., 45, 5380, 10.1029/2017GL076691

Kemp, 2005, Astronomical pacing of methane release in the Early Jurassic period, Nature, 437, 396, 10.1038/nature04037

Kemp, 2005, Clay mineral reaction progress–the maturity and burial history of the Lias Group of England and Wales, Clay Miner., 40, 43, 10.1180/0009855054010154

Kemp, 2011, Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK, Paleoceanogr. Paleoclimatol., 26

Keren, 1981, Boron adsorption by clay minerals using a phenomenological equation, Clay Clay Miner., 29, 198, 10.1346/CCMN.1981.0290305

Korte, 2015, Jurassic climate mode governed by ocean gateway, Nat. Commun., 6, 10.1038/ncomms10015

Lazo, 2008, Palaeosalinity variations in the Early Cretaceous of the Neuquén Basin, Argentina: evidence from oxygen isotopes and palaeoecological analysis, Palaeogeogr. Palaeoclimatol. Palaeoecol., 260, 477, 10.1016/j.palaeo.2007.12.008

Lerman, 1966, Boron in clays and estimation of paleosalinities, Sedimentology, 6, 267, 10.1111/j.1365-3091.1966.tb01895.x

Little, 1995, Early Jurassic mass extinction: a global long-term event, Geology, 23, 495, 10.1130/0091-7613(1995)023<0495:EJMEAG>2.3.CO;2

Liu, 2019, Beyond redox: control of trace-metal enrichment in anoxic marine facies by watermass chemistry and sedimentation rate, Geochim. Cosmochim. Acta

Mackin, 1987, Boron and silica behavior in salt-marsh sediments; implications for paleo-boron distributions and the early diagenesis of silica, Am. J. Sci., 287, 197, 10.2475/ajs.287.3.197

McArthur, 2019, Early Toarcian black shales: a response to an oceanic anoxic evento or anoxia in marginal basins?, Chem. Geol., 522, 71, 10.1016/j.chemgeo.2019.05.028

McArthur, 2000, Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures, Earth Planet. Sci. Lett., 179, 269, 10.1016/S0012-821X(00)00111-4

McArthur, 2008, Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event, Paleoceanography, 23, 10.1029/2008PA001607

McArthur, 2016, Sr-isotope stratigraphy: Assigning time in the Campanian, Pliensbachian, Toarcian, and Valanginian, J.Geol., 124, 569, 10.1086/687395

Montero-Serrano, 2015, Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: insight from the Posidonia Shale section in the Swiss Jura Mountains, Palaeogeogr. Palaeoclimatol. Palaeoecol., 429, 83, 10.1016/j.palaeo.2015.03.043

Moran, 1992, Boron depletion during progressive metamorphism: implications for subduction processes, Earth Planet. Sci. Lett., 111, 331, 10.1016/0012-821X(92)90188-2

Müller, 2017, New multiproxy record of the Jenkyns Event (also known as the Toarcian Oceanic Anoxic Event) from the Mecsek Mountains (Hungary): Differences, duration and drivers, Sedimentology, 64, 66, 10.1111/sed.12332

Muttik, 2011, Boron isotope composition of secondary smectite in suevites at the Ries crater, Germany: boron fractionation in weathering and hydrothermal processes, Earth Planet. Sci. Lett., 310, 244, 10.1016/j.epsl.2011.08.028

Pálfy, 2000, Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism, Geology, 28, 747, 10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2

Palliani, 2002, The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England, Mar. Micropaleontol., 46, 223, 10.1016/S0377-8398(02)00064-6

Panahi, 2000, Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada, Geochim. Cosmochim. Acta, 64, 2199, 10.1016/S0016-7037(99)00420-2

Pearce, 2008, Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic, Geology, 36, 231, 10.1130/G24446A.1

Perry, 1972, Diagenesis and the validity of the boron paleosalinity technique, Am. J. Sci., 272, 150, 10.2475/ajs.272.2.150

Petersen, 2016, Temperature and salinity of the late Cretaceous western interior seaway, Geology, 44, 903, 10.1130/G38311.1

Powell, 2010, Jurassic sedimentation in the Cleveland Basin: a review, Proc. Yorks. Geol. Soc., 58, 21, 10.1144/pygs.58.1.278

Prauss, 1991, Organic matter and palynomorphs in the ‘Posidonienschiefer’ (Toarcian, Lower Jurassic) of southern Germany, 58, 335

Raiswell, 1988, Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation, J. Sediment. Res., 58, 812

Raucsik, 2008, Climato-environmental controls on clay mineralogy of the Hettangian–Bajocian successions of the Mecsek Mountains, Hungary: an evidence for extreme continental weathering during the early Toarcian oceanic anoxic event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 265, 1, 10.1016/j.palaeo.2008.02.004

Rawson, 1995, Jurassic of the Cleveland Basin, North Yorkshire, 173

Redfield, 1963, The influence of organisms on the composition of seawater, 2, 26

Remírez, 2020, A global review of the Early Jurassic Toarcian oceanic anoxic event, Earth-Sci. Rev.

Röhl, 2001, The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 27, 10.1016/S0031-0182(00)00152-8

Rosales, 2004, Elemental and oxygen isotope composition of Early Jurassic belemnites: salinity vs. temperature signals, J. Sediment. Res., 74, 342, 10.1306/112603740342

Rosales, 2018, Isotope records (C-O-Sr) of late Pliensbachian-early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain), Palaeogeogr. Palaeoclimatol. Palaeoecol., 497, 168, 10.1016/j.palaeo.2018.02.016

Ruebsam, 2019, Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution, Glob. Planet. Chang., 172, 440, 10.1016/j.gloplacha.2018.11.003

Rytuba, 2003, Hydrothermal enrichment of gallium in zones of advanced argillic alteration—examples from the Paradise Peak and McDermitt ore deposits, Nevada: U.S, Geol. Den. Surv. Bull., 16

Sabatino, 2009, Carbon isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications, Sedimentology, 56, 1307, 10.1111/j.1365-3091.2008.01035.x

Saelen, 1996, Stable-isotope analyses of belemnite rostra from the Whitby Mudstone Fm., England: surface water conditions during deposition of a marine black shale, Palaios, 11, 97, 10.2307/3515065

Sageman, 2004, Geochemistry of fine-grained sediments and sedimentary rocks, 115

Schmid-Röhl, 2002, Palaeoenvironmental reconstruction of lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): global versus regional control, Geobios, 35, 13, 10.1016/S0016-6995(02)00005-0

Schmoker, 1979, Determination of organic content of Appalachian Devonian shales from formation-density logs, Am. Assoc. Pet. Geol. Bull., 63, 1504

Schouten, 2000, Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon, Am. J. Sci., 300, 1, 10.2475/ajs.300.1.1

Scott, 2008, Tracing the stepwise oxygenation of the Proterozoic ocean, Nature, 452, 456, 10.1038/nature06811

Seilacher, 2011, Developmental transformations in Jurassic driftwood crinoids, Swiss J. Palaeontol., 130, 129, 10.1007/s13358-010-0012-1

Shaw, 1966, A review of boron sedimentary geochemistry in relation to new analyses of some North American shales, Can. J. Earth Sci., 3, 49, 10.1139/e66-004

Shiller, 1996, The geochemistry of gallium relative to aluminum in Californian streams, Geochim. Cosmochim. Acta, 60, 1323, 10.1016/0016-7037(96)00002-6

Sim, 2011, Large sulfur isotope fractionation does not require disproportionation, Science, 333, 74, 10.1126/science.1205103

Simms, 1986, Contrasting lifestyles in Lower Jurassic crinoids: a comparison of benthic and pseudopelagic Isocrinida, Palaeontology, 29, 475

Singh, 1966, Borgehaltsbestimmungen im Knollenmergel-Keuper (Südwestdeustchland), Chem. Geol., 1, 251, 10.1016/0009-2541(66)90019-2

Song, 2017, Organic geochemistry of the Lower Toarcian Posidonia Shale in NW Europe, Org. Geochem., 106, 76, 10.1016/j.orggeochem.2016.10.014

Spivack, 1987, Boron isotope exchange between seawater and the oceanic crust, Geochim. Cosmochim. Acta, 51, 1033, 10.1016/0016-7037(87)90198-0

Środoń, 2011, Role of clays in the diagenetic history of nitrogen and boron in the Carboniferous of Donbas (Ukraine), Clay Miner., 46, 561, 10.1180/claymin.2011.046.4.561

Suan, 2008, Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequences for its possible causes, Earth Planet. Sci. Lett., 267, 666, 10.1016/j.epsl.2007.12.017

Suan, 2015, Calibrating the magnitude of the Toarcian carbon cycle perturbation, Paleoceanography, 30, 495, 10.1002/2014PA002758

Suan, 2018, Euxinic conditions and high sulfur burial near the European shelf margin (Pieniny Klippen Belt, Slovakia) during the Toarcian oceanic anoxic event, Glob. Planet. Chang., 170, 246, 10.1016/j.gloplacha.2018.09.003

Svensen, 2007, Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming, Earth Planet. Sci. Lett., 256, 554, 10.1016/j.epsl.2007.02.013

Them, 2017, Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event, Sci. Rep., 7, 5003, 10.1038/s41598-017-05307-y

Them, 2017, High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle, Earth Planet. Sci. Lett., 459, 118, 10.1016/j.epsl.2016.11.021

Thibault, 2018, The wider context of the Lower Jurassic Toarcian oceanic anoxic event in Yorkshire coastal outcrops, UK, Proc. Geol. Assoc., 129, 372, 10.1016/j.pgeola.2017.10.007

Tribovillard, 2004, Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales, Chem. Geol., 213, 385, 10.1016/j.chemgeo.2004.08.011

Tribovillard, 2006, Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12, 10.1016/j.chemgeo.2006.02.012

van de Schootbrugge, 2005, Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records, Paleoceanography, 20, 10.1029/2004PA001102

van de Schootbrugge, 2005, Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean, Paleobiology, 31, 73, 10.1666/0094-8373(2005)031<0073:EJCCAT>2.0.CO;2

Vidal, 2014, Cephalopod culture: current status of main biological models and research priorities, 67, 1

Villumsen, 1976, The influence of palaeosalinity, grain size distribution and clay minerals on the content of B, Li and Rb in Quaternary sediments from Eastern Jutland, Denmark, Sedimentology, 23, 845, 10.1111/j.1365-3091.1976.tb00112.x

Vorlicek, 2004, Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides, Geochim. Cosmochim. Acta, 68, 547, 10.1016/S0016-7037(03)00444-7

Wang, 2011, Distribution, occurrence and enrichment causes of gallium in coals from the Jungar Coalfield, Inner Mongolia, Sci. China D: Earth Sci., 54, 1053, 10.1007/s11430-010-4147-0

Wedepohl, 1991, The composition of the upper Earth's crust and the natural cycles of selected metals, 3

Wei, 2019, Elemental proxies for paleosalinity analysis, Geochim. Cosmochim. Acta

Wei, 2018, Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China, Int. J. Coal Geol., 200, 1, 10.1016/j.coal.2018.10.001

Wierzbowski, 2018, Clumped isotope record of salinity variations in the Subboreal Province at the Middle–Late Jurassic transition, Glob. Planet. Chang., 167, 172, 10.1016/j.gloplacha.2018.05.014

Wignall, 1991, Model for transgressive black shales?, Geology, 19, 167, 10.1130/0091-7613(1991)019<0167:MFTBS>2.3.CO;2

Wignall, 1991, Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales, 58, 291

Wignall, 1990, Pseudoplankton, Palaeontology, 33, 359

Wignall, 2005, The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe, Am. J. Sci., 305, 1014, 10.2475/ajs.305.10.1014

Williams, 2002, Intracrystalline boron isotope variations in clay minerals: a potential low-temperature single mineral geothermometer, Am. Mineral., 87, 1564, 10.2138/am-2002-11-1206

Williams, 2005, Lithium and boron isotopes in illite-smectite: The importance of crystal size, Geochim. Cosmochim. Acta, 69, 5705, 10.1016/j.gca.2005.08.005

Williams, 2001, Boron isotope geochemistry during diagenesis: part 1. Experimental determination of fractionation during illitiza- tion of smectite, Geochim. Cosmochim. Acta, 65, 1769, 10.1016/S0016-7037(01)00557-9

Williams, 2007, Intracrystalline boron isotope partitioning in illite-smectite: Testing the geothermometer, Am. Mineral., 92, 1958, 10.2138/am.2007.2531

Xu, 2018, Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK), Earth Planet. Sci. Lett., 484, 396, 10.1016/j.epsl.2017.12.037

You, 1996, Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones, Earth Planet. Sci. Lett., 140, 41, 10.1016/0012-821X(96)00049-0

Zeng, 2015, Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China, Mar. Pet. Geol., 64, 203, 10.1016/j.marpetgeo.2015.02.031

Zhang, 2017, Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin, J. Pet. Sci. Eng., 158, 469, 10.1016/j.petrol.2017.08.074

Zhou, 2016, Relation of pyroclastic volcanism and lake-water acidification to Jehol Biota mass mortality events (Early Cretaceous, northeastern China), Chem. Geol., 428, 59, 10.1016/j.chemgeo.2016.02.029