Paleoenvironmental changes during the early Toarcian Oceanic Anoxic Event: Insights into organic carbon distribution and controlling mechanisms in the eastern Tethys
Tài liệu tham khảo
Abdullah, 2001, A preliminary evaluation of Jurassic source rock potential in Kuwait, J. Pet. Geol, 24, 361, 10.1111/j.1747-5457.2001.tb00679.x
Algeo, 2007, Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 256, 130, 10.1016/j.palaeo.2007.02.029
Algeo, 2006, Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, PA1016, 10.1029/2004PA001112
Algeo, 2004, Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol., 206, 289, 10.1016/j.chemgeo.2003.12.009
Arndt, 2013, Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53, 10.1016/j.earscirev.2013.02.008
Babu, 2002, Barium as a productivity proxy in continental margin sediments: a study from the eastern Arabian sea, Mar. Geol., 184, 189, 10.1016/S0025-3227(01)00286-9
Baudin, F., Herbin, J.P., Bassoullet, J.P., Dercourt, J., Lachkar, G., Manmt, H., Renard, M., 1990. Distribution of organicmatter during the Toarcian in the Mediterranean Tethys and middle east. In: Huc, A.Y. (Ed.), Deposition of Organic Facies. Studies in Geology 30. American Association of Petroleum Geologists, pp. 73–91.
Betzer, 1984, Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean, Deep Sea Res., 31, 1, 10.1016/0198-0149(84)90068-2
Blakey, R., 2019. Colorado Plateau Geosystem, Inc. Website. https://deeptimemaps.com/ (Accessed August 22nd 2019).
Bohacs, K.M., Grabowski, G.J., Carroll, A.R., Mankiewics, P.J., Miskell-Gerhardt, K.J., Schwalbach, J.R., Wegner, M.B., Simo, J.A., 2005. Production, Destruction, and Dilution- the Many Paths to Source-Rock Development, vol. 82. The Society of Economic Paleontologists and Mineralogists, Special Publication, pp. 61-101.
Calvert, 2007, Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application, 568
Canfield, 1994, Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315, 10.1016/0009-2541(94)90061-2
Chen, 2016, Preliminary nannofossil and geochemical data from Jurassic black shales from the Qiangtang Basin, northern Tibet, J. Asian Earth Sci., 115, 257, 10.1016/j.jseaes.2015.10.004
Chen, 2018, Calcareous nannofossils from the Jurassic black shales in the Qiangtang Basin, Northern Tibet (China): new records of stratigraphic ages and palaeoceanography, Newsletter on Stratigraphy, 52, 55, 10.1127/nos/2018/0464
Chen, 2017, Chemo- and biostratigraphy of the Early Jurasic oil shales from the Qiangtang basin, northern Tibet, China: A case study for the Toarcian Oceanic Anoxic Event, Acta Geol. Sin., 91, 630, 10.1111/1755-6724.13122
Cohen, 2004, Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering, Geology, 32, 157, 10.1130/G20158.1
Coplen, 1996, Ratios for light-element isotopes standardized for better interlaboratory comparison, Eos, 77, 255, 10.1029/96EO00182
Danise, 2015, Environmental controls on Jurassic marine ecosystems during global warming, Geology, 43, 263, 10.1130/G36390.1
Ding, 2013, Provenance analysis of the Mesozoic Hoh-Xil- Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean, Tectonics, 32, 34, 10.1002/tect.20013
Dymond, 1992, Barium in deep-sea sediments: a geochemical proxy for paleoproductivity, Paleoceanography, 7, 163, 10.1029/92PA00181
Fang, 2016, Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites, Gondwana Res., 37, 110, 10.1016/j.gr.2016.05.012
Fantasia, 2019, Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: a multi-proxy record, Earth Sci. Rev., 198, 10.1016/j.earscirev.2019.102932
Fernandez, 2021, Reconstructing the magnitude of Early Toarcian (Jurassic) warming using the reordered clumped isotope compositions of belemnites, Geochim. Cosmochim. Acta, 293, 308, 10.1016/j.gca.2020.10.005
Föllmi, 1996, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth-Sci. Rev., 40, 55, 10.1016/0012-8252(95)00049-6
Fu, 2016, Early Jurassic carbon-isotope excursion in the Qiangtang Basin (Tibet), the eastern Tethys: Implications for the Toarcian Oceanic anoxic event, Chem. Geol., 442, 62, 10.1016/j.chemgeo.2016.09.007
Fu, 2021, A Toarcian Ocean Anoxic Event record from an open-ocean setting in the eastern Tethys: Implications for global climatic change and regional environmental perturbation, Sci. China Earth Sci., 64, 1860, 10.1007/s11430-020-9753-1
Fu, 2017, Continental weathering and palaeoclimatic changes through the onset of the Early Toarcian oceanic anoxic event in the Qiangtang Basin, eastern Tethys, Palaeogeogr. Palaeoclimatol. Palaeoecol., 487, 241, 10.1016/j.palaeo.2017.09.005
Fu., X., Nie, Y., Hu, Z., 2022. Comment on “Yin, J. (2022), A revision and new data on the Jurassic ammonites from the Biluoco area, southern Qiangtang block (North Tibet)”. Newsletters on Stratigraphy, 55/1, 1-19.
Gao, 2016, Geological and geochemical characterization of lacustrine shale, a case study of Lower Jurassic Badaowan shale in the Junggar Basin, Northwest China, J. Nat. Gas Sci. Eng., 31, 15, 10.1016/j.jngse.2016.03.006
Geiger, 2004
Geyman, 2019, A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen, Proc. Natl. Acad. Sci., 116, 24433, 10.1073/pnas.1908783116
Heimdal, 2021, Assessing the importance of thermogenic degassing from the Karoo Large Igneous Province (LIP) in driving Toarcian carbon cycle perturbations, Nat. Commun., 12, 6221, 10.1038/s41467-021-26467-6
Hermoso, 2013, Black shale deposition during Toarcian super-greenhouse driven by sea level, Clim. Past, 9, 2703, 10.5194/cp-9-2703-2013
Newton, 2011, Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic, Geology, 39, 7, 10.1130/G31326.1
Gómez, 2016, Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain), Clim. Past, 12, 1199, 10.5194/cp-12-1199-2016
Gröcke, 2011, An open ocean record of the Toarcian oceanic anoxic event, Solid Earth, 2, 245, 10.5194/se-2-245-2011
Han, 2018, Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise, Earth Planet. Sci. Lett., 489, 59, 10.1016/j.epsl.2018.02.017
Hermoso, 2012, Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change, Earth Planet. Sci. Lett., 319, 45, 10.1016/j.epsl.2011.12.021
Hesselbo, 2007, Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal), Earth Planet. Sci. Lett., 253, 455, 10.1016/j.epsl.2006.11.009
Hesselbo, 2000, Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, 406, 392, 10.1038/35019044
Hu, 2020, Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms, Science China Earth Sceinces, 63
Ikeda, 2018, Carbon cycle dynamics linked with Karoo-Ferrar volcanism and astronomical cycles during Pliensbachian-Toarcian (Early Jurassic), Global Planet. Change, 170, 163, 10.1016/j.gloplacha.2018.08.012
Ingall, 1993, Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales, Geochim. Cosmochim. Acta, 57, 303, 10.1016/0016-7037(93)90433-W
Ingall, 2005, Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord, Effingham Inlet, British Columbia, Am. J. Sci., 305, 240, 10.2475/ajs.305.3.240
Jacobsen, 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater, Chem. Geol., 161, 37, 10.1016/S0009-2541(99)00080-7
Jenkyns, 1988, The early Toarcian (Jurassic) Anoxic event: stratigraphic, sedimentary, and geochemical evidence, Am. J. Sci., 288, 101, 10.2475/ajs.288.2.101
Jenkyns, 2002, Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography, J. Geol. Soc., 159, 351, 10.1144/0016-764901-130
Jin, 2020, The Jenkyns Event (early Toarcian OAE) in the Ordos Basin, North China, Global Planet. Change, 193, 103273, 10.1016/j.gloplacha.2020.103273
Kapp, 2007, Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119, 917, 10.1130/B26033.1
Kasten, 2001, Barium peaks at glacial terminations in sediments of the equatorial Atlantic Ocean - relicts of deglacial productivity pulses?, Chem. Geol., 175, 635, 10.1016/S0009-2541(00)00377-6
Kemp, 2014, Multiproxy geochemical analysis of a Panthalassic margin record of the early Toarcian oceanic anoxic event (Toyora area, Japan), Palaeogeogr. Palaeoclimatol. Palaeoecol., 414, 332, 10.1016/j.palaeo.2014.09.019
Kemp, 2005, Astronomical pacing of methane release in the Early Jurassic period, Nature, 437, 396, 10.1038/nature04037
Kemp, 2020, Direct coupling between carbon release and weathering during the Toarcian oceanic anoxic event, Geology, 48, 976, 10.1130/G47509.1
Krencker, 2020, Two-phased collapse of the shallow-water carbonate factory during the late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the Northwestern Gondwana Margin, Earth-Sci. Rev., 208, 10.1016/j.earscirev.2020.103254
Krencker, 2019, A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle, Sci. Rep., 9, 12518, 10.1038/s41598-019-48956-x
Li, 2020, A late Jurassic carbon-isotope record from the Qiangtang Basin (Tibet), eastern Tethys, and its palaeoceanographic implications, Global Planet. Change, 195, 103349, 10.1016/j.gloplacha.2020.103349
Liguori, 2016, Barium and its Importance as an Indicator of (Paleo)Productivity, Anais da Academia Brasileira de Ciências, 88, 2093, 10.1590/0001-3765201620140592
Liu, 2020, Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China, Global Planet. Change, 191, 103214, 10.1016/j.gloplacha.2020.103214
Ma, 2017, Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing, J. Geophys. Res. -Solid Earth, 122, 4790, 10.1002/2017JB014211
Mansour, 2020, Hydrocarbon potential and depositional paleoenvironment of a Middle Jurassic succession in the Falak-21 well, Shushan Basin, Egypt: Integrated palynological, geochemical and organic petrographic approach, Int. J. Coal Geol., 219, 103374, 10.1016/j.coal.2019.103374
Mansour, 2022, Earth system changes during the cooling greenhouse phase of the Late Cretaceous: Coniacian-Santonian OAE3 subevents and fundamental variations in organic carbon deposition, Earth Sci. Rev., 229, 104022, 10.1016/j.earscirev.2022.104022
Mansour, 2020, Depositional and organic carbon-controlled regimes during the Coniacian-Santonian event: First results from the southern Tethys (Egypt), Mar. Pet. Geol., 115, 104285, 10.1016/j.marpetgeo.2020.104285
Mansour, 2021, Climate variability and paleoceanography during the Late Cretaceous: Evidence from palynology, geochemistry and stable isotopes analyses from the southern Tethys, Cretac. Res., 126, 104831, 10.1016/j.cretres.2021.104831
Mattioli, 2009, Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE), Global Planet. Change, 65, 134, 10.1016/j.gloplacha.2008.10.018
McElwain, 2005, Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals, Nature, 435, 479, 10.1038/nature03618
McLennan, 1993, Geochemical approaches to sedimentation, provenance, and tectonics, Geol. Soc. Am. Spec. Pap., 284, 21
McManus, 1998, Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy, Geochim. Cosmochim. Acta, 62, 3453, 10.1016/S0016-7037(98)00248-8
Montero-Serrano, 2015, Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains, Palaeogeogr. Palaeoclimatol. Palaeoecol., 429, 83, 10.1016/j.palaeo.2015.03.043
Morse, 1999, Chemical influences on trace metal–sulfide interactions in anoxic sediments, Geochim. Cosmochim. Acta, 63, 3373, 10.1016/S0016-7037(99)00258-6
Mort, H., Adatte, T., Föllmi, K., Keller, Steinmann, P., Matera, V., Berner, Z., Stüben, D., 2007. Phosphorus and the roles of productivity and nutrient recycling during Oceanic Anoxic Event 2. Geology, 35, 6, 483-486.
Nesbitt, 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochim. Cosmochim. Acta, 48, 1523, 10.1016/0016-7037(84)90408-3
Niebuhr, 2005, Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany), Geol. Mag., 142, 31, 10.1017/S0016756804009999
Pedersen, 1990, Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?, Am. Assoc. Pet. Geol. Bull., 74, 454
Remírez, 2020, Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event, Earth-Sci. Rev., 209, 103283, 10.1016/j.earscirev.2020.103283
Ricken, W., 1993. Sedimentation as a Three-Component System: Organic Carbon, Carbonate, Noncarbonate. Lecture Notes in Earth Sciences Series Volume 51. 211 pp.
Redfield, 1958, The biological control of chemical factors in the environment, Am. Sci., 46, 205
Reolid, 2012, The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African Paleomargin): role of anoxia and productivity, Geol. Soc. Am. Bull., 124, 1646, 10.1130/B30585.1
Reolid, 2014, The Early Toarcian Oceanic anoxic event in the external subbetic (Southiberian Palaeomargin, Westernmost Tethys): geochemistry, nannofossils and ichnology. 1037 Palaeogeography, Palaeoclimatology, Palaeoecology, 411, 79, 10.1016/j.palaeo.2014.06.023
Reolid, M., Molina, J.M., Nieto, L.M. and Rodríguez-Tovar, F.J., 2018. The Toarcian oceanic anoxic event in the South Iberian Palaeomargin. In: Springer Briefs in Earth Sciences, 122 pp.
Rodrigues, 2020, Sedimentary organic matter and early Toarcian environmental changes in the Lusitanian Basin (Portugal), Palaeogeogr. Palaeoclimatol. Palaeoecol., 554, 109781, 10.1016/j.palaeo.2020.109781
Röhl, 2001, The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 27, 10.1016/S0031-0182(00)00152-8
Ruebsam, 2022, Molecular fossils and calcareous nannofossils reveal recurrent phytoplanktonic events in the early Toarcian, Glob. Planet. Change, 212, 10.1016/j.gloplacha.2022.103812
Ruebsam, 2019, Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution, Global Planet. Change, 172, 440, 10.1016/j.gloplacha.2018.11.003
Ruebsam, 2020, Toarcian climate and carbon cycle perturbations – its impact on sea-level changes, enhanced mobilization and oxidation of fossil organic matter, Earth Planet. Sci. Lett., 546, 116417, 10.1016/j.epsl.2020.116417
Ruebsam, 2020, Molecular paleothermometry of the early Toarcian climate perturbation, Global Planet. Change, 195, 103351, 10.1016/j.gloplacha.2020.103351
Ruebsam, 2020, Calibrating the Early Toarcian (Early Jurassic) with stratigraphic black holes (SBH), Gondwana Res., 82, 317, 10.1016/j.gr.2020.01.011
Ruebsam, 2021, Orbitally synchronized late Pliensbachian–early Toarcian carbon-isotope and glacio-eustatic cycles, Palaeogeogr. Palaeoclimatol. Palaeoecol., 577, 110562, 10.1016/j.palaeo.2021.110562
Rutsch, 1995, 10Be and Ba concentrations in western African sediments trace productivity in the past, Earth Planet. Sci. Lett., 133, 129, 10.1016/0012-821X(95)00069-O
Ruvalcaba Baroni, 2018, Ocean circulation in the Toarcian (Early Jurassic): A key control on deoxygenation and carbon burial on the European shelf, Paleoceanogr. Paleoclimatol., 33, 994, 10.1029/2018PA003394
Sengör, 1987, Tectonics of the Tethysides: orogenic collage development in a collisional setting, Annu. Rev. Earth Planet. Sci., 15, 213, 10.1146/annurev.ea.15.050187.001241
Shekarifard, 2012, Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran) based on organic petrography, geochemistry and basin modelling: Implications for source rock evaluation and petroleum exploration, Geol. Mag., 149, 19, 10.1017/S0016756811000161
Silva, 2021, An Early Jurassic (Sinemurian–Toarcian) stratigraphic framework for the occurrence of Organic Matter Preservation Intervals (OMPIs), Earth-Sci. Rev., 221, 10.1016/j.earscirev.2021.103780
Su, 2015, Late early Jurassic Posidonia shale facies in Qiangtang Basin and its chronostratigraphic significance, Geol. Bull. China, 34, 1617
Svensen, 2007, Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming, Earth Planet. Sci. Lett., 256, 554, 10.1016/j.epsl.2007.02.013
Taylor, 1985, 312
Them, 2017, Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic anoxic event, Sci. Rep., 7, 5003, 10.1038/s41598-017-05307-y
Them, 2017, High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle, Earth Planet. Sci. Lett., 459, 118, 10.1016/j.epsl.2016.11.021
Them, 2017, Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event, Sci. Rep., 7, 10.1038/s41598-017-05307-y
Them, 2018, Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction, Proc. Natl. Acad. Sci., 115, 6596, 10.1073/pnas.1803478115
Tribovillard, 2006, Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12, 10.1016/j.chemgeo.2006.02.012
Tribovillard, 2010, Bacterial calcification as a possible trigger for francolite precipitation under sulfidic conditions, C.R. Geosci., 342, 27, 10.1016/j.crte.2009.10.007
van Cappellen, 1994, Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9, 677, 10.1029/94PA01455
Van de Schootbrugge, 2020, Enhanced Arctic-Tethys connectivity ended the Toarcian Oceanic Anoxic Event in NW Europe, Geol. Mag., 157, 1593, 10.1017/S0016756819001262
van Santvoort, 1996, Active postdepositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea, Geochim. Cosmochim. Acta, 60, 4007, 10.1016/S0016-7037(96)00253-0
Vine, 1970, Geochemistry of black shale deposits; a summary report, Econ. Geol., 65, 253, 10.2113/gsecongeo.65.3.253
von Eynatten, 2003, Modelling compositional change: the example of chemical weathering of granitoid rocks, Math. Geol., 35, 231, 10.1023/A:1023835513705
Wang, 2014, Outward-growth of the Tibetan Plateau during the Cenozoic: a review, Tectonophysics, 621, 1, 10.1016/j.tecto.2014.01.036
Wang, 2022, Late Triassic basin inversion of the Qiangtang Basin in northern Tibet: Implications for the closure of the Paleo-Tethys and expansion of the Neo-Tethys, J. Asian Earth Sci., 227, 105119, 10.1016/j.jseaes.2022.105119
Wang, 2012
Wang, 2019, Sedimentary successions and onset of the Mesozoic Qiangtang rift basin (northern Tibet), southwest China: Insights on the Paleo- and Meso-Tethys evolution, Mar. Petrol. Geol., 102, 657, 10.1016/j.marpetgeo.2019.01.017
Wedepohl, 1995, The composition of the continental crust, Geochim. Cosmochim. Acta, 59, 1217, 10.1016/0016-7037(95)00038-2
Xia, 2021, Depositional paleoenvironment and source rock characterization across the Toarcian Oceanic Anoxic Event from the eastern Tethys, Tibet, SW China, Int. J. Coal Geol., 243, 103780, 10.1016/j.coal.2021.103780
Xu, 2017, Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event, Nat. Geosci., 10, 129, 10.1038/ngeo2871
Yi, 2003, New biostratigraphic data of the Qiangtang area in the northern Tibetan plateau, Geol. Rev., 49, 59
Yin, 2021, A revision and new data on the Jurassic ammonites from the Biluoco area, southern Qiangtang block (North Tibet), Newslett. Stratigr.
Yin, 2016, Aalenian to Lower Bajocian ammonites from the Qiangtang block (North Tibet), Proc. Geol. Assoc., 127, 172, 10.1016/j.pgeola.2015.11.001
Zhu, 2013, The origin and pre- Cenozoic evolution of the Tibetan Plateau, Gondwana Res., 23, 1429, 10.1016/j.gr.2012.02.002
Yin, 2006, Jurassic ammonites in anoxic black shales from Sewa and Ando, northern Tibet, Acta Palaeontolgica Sinica, 45, 311