Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá cổ sinh thái về động thái cộng đồng Cladocera trong hai vùng đất ngập nước subarctic
Tóm tắt
Cấu trúc và động thái cộng đồng giáp xác đã được nghiên cứu rất tốt ở các hồ, sông và hệ thống đại dương, nhưng các vùng đất ngập nước, nơi điều kiện độ ẩm biến đổi, thì chưa nhận được sự chú ý tương xứng trong nghiên cứu. Ví dụ, cộng đồng Cladocera trong các hệ thống đất than bùn ở vùng subarctic chưa được điều tra một cách đầy đủ. Chúng tôi đã sử dụng các phương pháp cổ sinh học và cổ sinh thái để nghiên cứu các tập hợp thực vật và Cladocera cùng với động thái cộng đồng trong hai vùng đất ngập nước subarctic, mà khác nhau về đặc điểm thủy văn. Tại địa điểm đầu tiên, Iitto, các trận lũ sông giới thiệu các loài phù du vào các ao fen và địa hình dốc của lưu vực dẫn đến những giai đoạn ngập nước nhanh chóng nhưng tương đối ngắn. Các điều kiện môi trường biến đổi dẫn đến một lượng lớn các giai đoạn nghỉ ngơi của Cladocera trong các mẫu. Tại địa điểm khác, Kaamanen, tập hợp Cladocera trải qua những thay đổi rõ rệt về phương hướng, có thể là do những thay đổi về thủy văn ở fen và cuối cùng là do những thay đổi khí hậu trong suốt hai thiên niên kỷ qua.
Từ khóa
#Cladocera #cổ sinh thái #vùng đất ngập nước #thủy văn #khí hậu #động thái cộng đồng #đất than bùnTài liệu tham khảo
Aurela M, Tuovinen J-P, Laurila T (1998) Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by the eddy covariance technique. Journal of Geophysical Research 103:11289–11301
Battes KP, Moldovan I, Sas A (2014) Planktonic microcrustaceans (Crustacea:Cladocera,Copepoda) from several protected peat wetlands, differing in trophic state. North-Western Journal of Zoology 10(supplement 1):S78–S86
Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen−analytical data. The Holocene 2:1–10
Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6:457–474
Błędzki LA, Rybak JI (2016) Freshwater crustacean zooplankton of Europe. Springer International Publishing, Swizerland
Bring A, Fedorova I, Dibike Y, Hinzman L, Mård J, Mernild SH, Prowse T, Semenova O, Stuefer SL, Woo M-K (2016) Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. Journal of Geophysical Research: Biogeosciences 121:621–649. https://doi.org/10.1002/2015JG003131
Clarke KR (1993) Non−parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18:117–143
Coronel JS, Declerck S, Brendonck L (2007) High-altitude peatland temporary pools in Bolivia house a high cladoceran diversity. Wetlands 27:1166–1174
DiFonzo CD, Campbell JM (1988) Spatial partitioning of microhabitats in littoral cladoceran communities. Journal of freshwater ecology 4:303–313
Dumont HJ (1995) The evolution of groundwater cladoceran. Hydrobiologia 307:69–74
Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012) Orbital forcing of tree-ring data. Nature Climate Change 2:686–866
Frey DG (1960) The ecological significance of cladoceran remains in lake sediments. Ecology 41:684–699
Gaedge U (2009) Trophic dynamics in aquatic ecosystems. In: Likens GE (ed) Plankton of inland waters. Elsevier, pp 344–350
Gałka M, Szal M, Watson EJ et al (2017) Vegetation Succession, Carbon Accumulation and Hydrological Change in Subarctic Peatlands, Abisko, Northern Sweden. Permafrost and Periglacial Processes 28:589–604
Gallego-Sala AV, Charman DJ, Brewer S et al (2018) Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change. https://doi.org/10.1038/s41558-018-0271-1
Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River Peatland, northern Minnesota. Journal of Ecology 78:1021–1048
Glime JM (2017) Arthropods: Crustacea – Copepoda and Cladocera. Chapter 10-1. In: Glime JM (ed) Bryophyte Ecology. Volume 2. Bryological Interaction. Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology2/. Accessed 20 March 2018
Gliwicz ZM, Umana G (1994) Cladoceran body size and vulnerability to copepod predation. Limnology and Oceanography 39:419–424
Hammer Ø, Harper DAT, Ryan PD (2001) PAST. Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9
Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Research 21:49–62
Holmquist JR, Finkelstein SA, Garneau M et al (2016) A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-arctic peatlands. Quaternary Geochronology 31:53–61. https://doi.org/10.1016/j.quageo.2015.10.003
Holden J (2006) Chapter 14 Peatland hyrdology. In: Martini IP, Martinez Cortizas A, Chesworth W (eds) Developments in Earth surface processes. Volume 9: Peatlands: Evolution and records of environmental and climate changes. Elsevier, pp 319-346
Jeppesen E, Nõges P, Davidson T, Haberman J, Nõges T, Blank K, Lauridsen T, Søndergaard M, Sayer C, Laugaste R, Johansson L, Bjerring R, Amsinck S (2011) Zooplankton as indicators in lakes: a scientific−based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676:279–297
Kalliola R, Puhakka M (1988) River dynamics and vegetation mosaicism: a case study of the River Kamajohka, northernmost Finland. Journal of Biogeography 15:703–719
Korhola A (1992) The early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. Journal of Paleolimnology 7:1–22
Korhola A (1999) Distribution patterns of Cladocera in subarctic fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357–373
Korhola A, Rautio M (2001) Cladocera and other Branchiopod crustaceans. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 4: Zoological indicators. Kluwer Academic Publishers, Dordrecht, pp 5–41
Korhola A, Tikkanen M, Weckström J (2005) Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera – lake depth transfer model. Journal of Paleolimnology 34:175–190
Kurek J, Korosi JB, Jeziorski A, Smol P (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44:603–612
Labuhn I, Hammarlund D, Chapron E, Czymzik M, Dumoulin J-P, Nilsson A, Régnier E, Robydg J, von Grafenstein U (2018) Holocene hydroclimate variability in central Scandinavia inferred from flood layers in contourite drift deposits in Lake Storsjön. Quaternary 1:2. https://doi.org/10.3390/quat1010002
Laine J, Harju P, Timonen T, Laine A, Tuittila E-S, Minkkinen K, Vasander H (2009) The Intricate Beauty of Sphagnum Mosses – a Finnish Guide to Identification. Publications 39. University of Helsinki Department of Forest Ecology, Helsinki
Leppänen J, Siitonen S, Weckström J (2017) The stability of Cladoceran communities in sub-Arctic NW Finnish Lapland lakes. Polar Biology 40:2211–2223. https://doi.org/10.1007/s00300-017-2135-y
Luoto TP, Kivilä HE, Rantala MV, Nevalainen L (2017) Characterization of the medieval climate anomaly, little ice age and recent warming in northern Lapland. International Journal of Climatology. https://doi.org/10.1002/joc.5081
Mathijssen P, Tuovinen J-P, Lohila A, Aurela M, Juutinen S, Laurila T, Niemelä E, Tuittila E-S, Väliranta M (2014) Development, carbon accumulation, and radiative forcing of a subarctic fen over the Holocene. The Holocene 24:1156–1166
Matveev V, Robson BJ (2014) Aquatic food web structure and the flow of carbon. Freshwater Reviews 7:1–24
Mauquoy D, Van Geel B (2007) Plant macrofossil methods and studies: Mire and Peat Macros. In: Elias SA (ed) Encyclopedia of Quaternary Science. Elsevier Science, Amsterdam, pp 2315–2336. https://doi.org/10.1016/B0-44-452747-8/00229-5
Mauquoy D, Hughes P, Van Geel B (2010) A protocol for plant macrofossil analysis of peat deposits. Mires and Peat 7:1–5
Medley KA, Havel JE (2007) Hydrology and local environmental factors influencing zooplankton communities in floodplain ponds. Wetlands 27:864–872
OIVA database (2018) Finnish environmental institute open database. syke.fi/avoindata. Accessed 10 Feb 2018.
Rautio M (1998) Community structure of crustacean zooplankton in subarctic ponds – effects of altitude and physical heterogeneity. Ecography 21:327–335
Sandøy S, Nilssen JP (1986) A geographical survey of littoral crustacea in Norway and their use in paleolimnology. Hydrobiologia 143:277–286
Sarmaja-Korjonen K, Hakojärvi M, Korhola A (2000) Subfossil of an unknown chydorid (Anomopoda: Chydoridae) from Finland. Hydrobiologia 436:165–169
Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11:527–539
Siitonen S, Väliranta M, Weckström J, Juutinen S, Korhola A (2011) Comparison of Cladocera –based water-depth reconstruction against other types of proxy data in Finnish Lapland. Hydrobiologia 676:155–172
Strayer D (1988) Crustaceans and mites (Acari) from hyporheic and other underground waters in southeastern New York. Stygologia 4:192–207
Swindles GT, Morris PJ, Mullan D et al (2015) The long-term fate of permafrost peatlands under rapid climate warming. Scientific Reports 5:17951. https://doi.org/10.1038/srep17951
Szeroczyńska K, Sarmaja–Korjonen K (2007) Atlas of subfossil cladocera from central and northern Europe. Friends of the Lower Vistula society, Warzaw
Tahvanainen T, Sallantaus T, Heikkilä R, Tolonen K (2002) Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Annales Botanici Fennici 39:235–251
Teltewskoi A, Beermann F, Beil I et al (2016) 4000 Years of Changing Wetness in a Permafrost Polygon Peatland (Kytalyk, NE Siberia): A Comparative High-Resolution Multi-Proxy Study. Permafrost and Periglacial Processes 27:76–95
Vad CF, Horváth Z, Kiss KT, Ács É, Török JK, Forró L (2012) Seasonal dynamics and composition of cladoceran and copepod assemblages in ponds of a Hungarian cutaway peatland. International Review of Hydrobiology 97:420–434. https://doi.org/10.1002/iroh.201201441
Viramo J. (editor) (1992): Oulanka Reports, Suokasviopas. Oulanka Biological Station, University of Oulu, 11.
Väliranta M, Korhola A, Seppä H, Tuittila E-S, Sarjama-Korjonen K, Laine J, Alm J (2007) High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The Holocene 17:1093–1107
Väliranta M, Oinonen M, Seppä H, Korkonen S, Juutinen S, Tuittila E-S (2014) Unexpected problems in AMS 14C dating of fen peat. Radiocarbon 56:95–108
Väliranta M, Salojärvi N, Vuorisalo A et al (2017) Holocene fen–bog transitions, current status in Finland and future perspectives. Holocene 27:752–764
