Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Việc tiêu thụ chế độ ăn giàu chất béo ngon miệng ảnh hưởng đến khía cạnh ghi nhớ và cảm xúc ở chuột cái theo chu kỳ động dục
Tóm tắt
Trên toàn cầu, việc tiêu thụ quá mức chất béo và/hoặc đường đã tăng lên đáng kể. Các chế độ ăn giàu chất béo (HFD) dễ ăn dẫn đến những rối loạn chuyển hóa và béo phì, đồng thời ảnh hưởng đến các quá trình cảm xúc và nhận thức. Các nghiên cứu trước đó ở các mô hình gặm nhấm đã gợi ý rằng HFD thường gây ra nhiều thay đổi hành vi, chẳng hạn như rối loạn học tập và trí nhớ, cũng như các hành vi lo âu. Sự khác biệt về giới tính ám chỉ khả năng hành vi và nhận thức khác nhau; tuy nhiên, hầu hết các nghiên cứu này đều tập trung vào chuột đực hoặc chuột cái đã cắt buồng trứng. Chúng tôi đã đánh giá tác động của HFD ở chuột cái được thực hiện các nhiệm vụ hành vi khác nhau, xem xét tác động của các biến động hormone nội sinh trong suốt chu kỳ động dục. Chuột cái Wistar trong mỗi giai đoạn của chu kỳ động dục được sử dụng thức ăn thương mại (CC) hoặc HFD trong 32 ngày. Trong quá trình điều trị, các đánh giá hành vi được thực hiện thông qua sở thích sucrose (SP), mê cung nâng cao (EPM), trường mở (OF) và ghi nhận đối tượng mới (NOR). Vào cuối các bài kiểm tra hành vi, các con vật đã bị chết do euthanasia, sau đó thực hiện phân tích miễn dịch mô học của não thông qua yếu tố dinh dưỡng thần kinh có nguồn gốc từ não (BDNF) và tyrosine hydroxylase (TH). Những kết quả chính cho thấy rằng (1) chuột ăn HFD có mức tăng khối lượng cơ thể và lượng thức ăn cao hơn, mà không làm thay đổi lượng calo hấp thụ, (2) chuột trong giai đoạn diestrus có lượng sucrose hấp thụ thấp hơn, (3) chuột cái trong giai đoạn metestrus và diestrus cho thấy sự thiếu hụt trong trí nhớ nhận diện đối tượng mới. Hơn nữa, sự miễn dịch TH giảm trong vân bụng và BDNF trong hồi hải mã ở chuột cái ăn HFD. Những kết quả này gợi ý rằng HFD đã làm thay đổi các khía cạnh thần kinh hóa học và chuyển hóa có thể gây ra những thay đổi hành vi phụ thuộc vào giai đoạn ở chuột cái.
Từ khóa
#chế độ ăn giàu chất béo #hành vi #trí nhớ #cảm xúc #chu kỳ động dục #chuột cái #rối loạn chuyển hóa #hormone nội sinh #phân tích miễn dịch mô họcTài liệu tham khảo
Ahmed H, Hannan JL, Apolzan JW, Osikoya O, Cushen SC, Romero SA, Goulopoulou S (2019) A free-choice high-fat, high-sucrose diet induces hyperphagia, obesity, and cardiovascular dysfunction in female cycling and pregnant rats. Am J Physiol Regul Integr Comp Physiol 316:R472–R485
Alzoubi KH, Mayyas FA, Mahafzah R, Khabour OF (2018) Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress. Behav Brain Res 336:93–98. https://doi.org/10.1016/j.bbr.2017.08.047
Beilharz JE, Maniam J, Morris MJ (2016) Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behav Brain Res 306:1–7. https://doi.org/10.1016/j.bbr.2016.03.018
Berglund ED et al (2012) Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest 122:1000–1009. https://doi.org/10.1172/JCI59816
Boi SK, Buchta CM, Pearson NA, Francis MB, Meyerholz DK, Grobe JL, Norian LA (2016) Obesity alters immune and metabolic profiles: New insight from obese-resistant mice on high-fat diet. Obesity (silver Spring) 24:2140–2149. https://doi.org/10.1002/oby.21620
Borrow AP, Handa RJ (2017) Estrogen receptors modulation of anxiety-like behavior. Vitam Horm 103:27–52. https://doi.org/10.1016/bs.vh.2016.08.004
Bortolin RC et al (2018) A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes (lond) 42:525–534. https://doi.org/10.1038/ijo.2017.225
Cone JJ, Chartoff EH, Potter DN, Ebner SR, Roitman MF (2013) Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression. PLoS ONE 8:e58251. https://doi.org/10.1371/journal.pone.0058251
Cordeira JW, Frank L, Sena-Esteves M, Pothos EN, Rios M (2010) Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 30:2533–2541. https://doi.org/10.1523/JNEUROSCI.5768-09.2010
de Aquino CC et al (2018) Effect of Hypoproteic and High-Fat Diets on Hippocampal Blood-Brain Barrier Permeability and Oxidative Stress Front Nutr 5:131. https://doi.org/10.3389/fnut.2018.00131
Dharavath RN, Arora S, Bishnoi M, Kondepudi KK, Chopra K (2019) High fat-low protein diet induces metabolic alterations and cognitive dysfunction in female rats. Metab Brain Dis. https://doi.org/10.1007/s11011-019-00459-4
Duffy CM, Hofmeister JJ, Nixon JP, Butterick TA (2019) High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol Learn Mem 157:41–47. https://doi.org/10.1016/j.nlm.2018.11.008
Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS (2016) High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology 41:1874–1887. https://doi.org/10.1038/npp.2015.357
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM (2019) Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 115:104557. https://doi.org/10.1016/j.yhbeh.2019.07.005
Estadella D, Oyama LM, Damaso AR, Ribeiro EB, Oller Do Nascimento CM (2004) Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 20:218–224. https://doi.org/10.1016/j.nut.2003.10.008
Estadella D et al (2011) A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats. Lipids Health Dis 10:168. https://doi.org/10.1186/1476-511X-10-168
FangFang LH, Qin T, Li M, Ma S (2017) Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metab Brain Dis 32:385–393. https://doi.org/10.1007/s11011-016-9921-z
Fritz BM, Muñoz B, Yin F, Bauchle C, Atwood BK (2018) A high-fat, high-sugar ‘Western’ diet alters dorsal striatal glutamate. Opioid, and Dopamine Transmission in Mice Neuroscience 372:1–15. https://doi.org/10.1016/j.neuroscience.2017.12.036
Ganji A, Salehi I, Nazari M, Taheri M, Komaki A (2017) Effects of Hypericum scabrum extract on learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet. Metab Brain Dis 32:1255–1265. https://doi.org/10.1007/s11011-017-0022-4
Garcia DN et al (2016) Differential effects of a high-fat diet on serum lipid parameters and ovarian gene expression in young and aged female mice. Zygote 24:676–683. https://doi.org/10.1017/S0967199415000684
Hilz EN, Smith RW, Hong YJ, Monfils MH, Lee HJ (2019) Mapping the estrous cycle to context-specific extinction memory. Behav Neurosci 133:614–623. https://doi.org/10.1037/bne0000343
Iwasa T, Matsuzaki T, Yano K, Irahara M (2018) The effects of ovariectomy and lifelong high-fat diet consumption on body weight, appetite, and lifespan in female rats. Horm Behav 97:25–30. https://doi.org/10.1016/j.yhbeh.2017.10.005
Jeong MY, Jang HM, Kim DH (2019) High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neurosci Lett 698:51–57. https://doi.org/10.1016/j.neulet.2019.01.006
Kalivarathan J, Chandrasekaran SP, Kalaivanan K, Ramachandran V, Carani Venkatraman A (2017) Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed Pharmacother 89:323–331. https://doi.org/10.1016/j.biopha.2017.01.162
Kim TW, Choi HH, Chung YR (2016) Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. J Exerc Rehabil 12:156–162. https://doi.org/10.12965/jer.1632644.322
Lazzarino GP, Maria Florencia A, Guillermina C, Jorge Guillermo R (2019) Cafeteria diet induces progressive changes in hypothalamic mechanisms involved in food intake control at different feeding periods in female rats. Mol Cell Endocrinol 498:110542. https://doi.org/10.1016/j.mce.2019.110542
Le Moene O, Stavarache M, Ogawa S, Musatov S, Agmo A (2019) Estrogen receptors alpha and beta in the central amygdala and the ventromedial nucleus of the hypothalamus: sociosexual behaviors, fear and arousal in female rats during emotionally challenging events. Behav Brain Res 367:128–142. https://doi.org/10.1016/j.bbr.2019.03.045
Leffa DD et al (2015) Effects of palatable cafeteria diet on cognitive and noncognitive behaviors and brain neurotrophins’ levels in mice. Metab Brain Dis 30:1073–1082. https://doi.org/10.1007/s11011-015-9682-0
Liu ML, Xu X, Rang WQ, Li YJ, Song HP (2004) Influence of ovariectomy and 17beta-estradiol treatment on insulin sensitivity, lipid metabolism and post-ischemic cardiac function. Int J Cardiol 97:485–493. https://doi.org/10.1016/j.ijcard.2003.11.046
Liu Y et al (2014) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188. https://doi.org/10.1016/j.bbr.2014.02.040
McLean FH et al (2018) Rapid and reversible impairment of episodic memory by a high-fat diet in mice. Sci Rep 8:11976. https://doi.org/10.1038/s41598-018-30265-4
Mizunoya W et al (2013) Effect of dietary fat type on anxiety-like and depression-like behavior in mice. Springerplus 2:165. https://doi.org/10.1186/2193-1801-2-165
Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803–814. https://doi.org/10.1016/s0306-4522(02)00123-9
Morgan MA, Schulkin J, Pfaff DW (2004) Estrogens and non-reproductive behaviors related to activity and fear. Neurosci Biobehav Rev 28:55–63. https://doi.org/10.1016/j.neubiorev.2003.11.017
Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF (2015) Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci Biobehav Rev 58:36–45. https://doi.org/10.1016/j.neubiorev.2014.12.002
Newell-Fugate AE, Taibl JN, Clark SG, Alloosh M, Sturek M, Krisher RL (2014) Effects of diet-induced obesity on metabolic parameters and reproductive function in female Ossabaw minipigs. Comp Med 64:44–49
Paccola CC, Resende CG, Stumpp T, Miraglia SM, Cipriano I (2013) The rat estrous cycle revisited: a quantitative and qualitative analysis. Anim Reprod 10:677–683
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G (2020) BDNF as a promising therapeutic agent in parkinson’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms21031170
Pereira-Silva DC, Machado-Silva RP, Castro-Pinheiro C, Fernandes-Santos C (2019) Does gender influence cardiovascular remodeling in C57BL/6J mice fed a high-fat, high-sucrose and high-salt diet? Int J Exp Pathol 100:153–160. https://doi.org/10.1111/iep.12318
Pinheiro-Castro N, Silva L, Novaes GM, Ong TP (2019) Hypercaloric diet-induced obesity and obesity-related metabolic disorders in experimental models. Adv Exp Med Biol 1134:149–161. https://doi.org/10.1007/978-3-030-12668-1_8
Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ (2010) Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 219:25–32. https://doi.org/10.1016/j.jneuroim.2009.11.010
Pletzer B, Harris TA, Scheuringer A, Hidalgo-Lopez E (2019) The cycling brain: menstrual cycle related fluctuations in hippocampal and fronto-striatal activation and connectivity during cognitive tasks. Neuropsychopharmacology 44:1867–1875. https://doi.org/10.1038/s41386-019-0435-3
Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810
Rodrigues L et al (2015) Effects of high-fat diet on salivary alpha-amylase, serum parameters and food consumption in rats. Arch Oral Biol 60:854–862. https://doi.org/10.1016/j.archoralbio.2015.02.015
Schmitt K, Holsboer-Trachsler E, Eckert A (2016) BDNF in sleep, insomnia, and sleep deprivation. Ann Med 48:42–51. https://doi.org/10.3109/07853890.2015.1131327
Sclafani A, Springer D (1976) Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17:461–471. https://doi.org/10.1016/0031-9384(76)90109-8
Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, O K, (2017) Short term high fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids 52:499–511. https://doi.org/10.1007/s11745-017-4253-2
Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes (lond) 37:382–389. https://doi.org/10.1038/ijo.2012.48
Sharma S, Fernandes MF, Fulton S (2013) Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes (lond) 37:1183–1191. https://doi.org/10.1038/ijo.2012.197
Soares MB et al (2019) Comparative effect of Camellia sinensis teas on object recognition test deficit and metabolic changes induced by cafeteria diet. Nutr Neurosci 22:531–540. https://doi.org/10.1080/1028415X.2017.1418726
Speed N et al (2011) Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS ONE 6:e25169. https://doi.org/10.1371/journal.pone.0025169
Spiteri T, Musatov S, Ogawa S, Ribeiro A, Pfaff DW, Agmo A (2010) The role of the estrogen receptor alpha in the medial amygdala and ventromedial nucleus of the hypothalamus in social recognition, anxiety and aggression. Behav Brain Res 210:211–220. https://doi.org/10.1016/j.bbr.2010.02.033
Spornitz UM, Socin CD, Dravid AA (1999) Estrous stage determination in rats by means of scanning electron microscopic images of uterine surface epithelium. Anat Rec 254:116–126
Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088. https://doi.org/10.1002/hipo.20470
Sun X et al (2017) Paeoniflorin ameliorates cognitive dysfunction via regulating SOCS2/IRS-1 pathway in diabetic rats. Physiol Behav 174:162–169. https://doi.org/10.1016/j.physbeh.2017.03.020
Sweeney P, O’Hara K, Xu Z, Yang Y (2017) HFD-induced energy states-dependent bidirectional control of anxiety levels in mice. Int J Obes (lond) 41:1237–1245. https://doi.org/10.1038/ijo.2017.112
Takase K, Tsuneoka Y, Oda S, Kuroda M, Funato H (2016) High-fat diet feeding alters olfactory-, social-, and reward-related behaviors of mice independent of obesity. Obesity (silver Spring) 24:886–894. https://doi.org/10.1002/oby.21441
Underwood EL, Thompson LT (2016) A high-fat diet causes impairment in hippocampal memory and sex-dependent alterations in peripheral metabolism. Neural Plast 2016:7385314. https://doi.org/10.1155/2016/7385314
Velloso LA, Schwartz MW (2011) Altered hypothalamic function in diet-induced obesity. Int J Obes (lond) 35:1455–1465. https://doi.org/10.1038/ijo.2011.56
Walf AA, Koonce C, Manley K, Frye CA (2009) Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze. Behav Brain Res 196:254–260. https://doi.org/10.1016/j.bbr.2008.09.016
Walker JM, Harrison FE (2015) Shared neuropathological characteristics of obesity, type 2 diabetes and alzheimer’s disease: impacts on cognitive decline. Nutrients 7:7332–7357. https://doi.org/10.3390/nu7095341
Wang S, Huang XF, Zhang P, Wang H, Zhang Q, Yu S, Yu Y (2016) Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice. J Nutr Biochem 36:42–50. https://doi.org/10.1016/j.jnutbio.2016.07.008
Woodie L, Blythe S (2018) The differential effects of high-fat and high-fructose diets on physiology and behavior in male rats. Nutr Neurosci 21:328–336. https://doi.org/10.1080/1028415X.2017.1287834
Yang J et al (2014) Neurotrophin 3 transduction augments remyelinating and immunomodulatory capacity of neural stem cells. Mol Ther 22:440–450. https://doi.org/10.1038/mt.2013.241
Yang W, Shi H, Zhang J, Shen Z, Zhou G, Hu M (2017) Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats. Lipids Health Dis 16:26. https://doi.org/10.1186/s12944-016-0401-6
Yoest KE, Cummings JA, Becker JB (2019) Ovarian hormones mediate changes in adaptive choice and motivation in female rats. Front Behav Neurosci 13:250. https://doi.org/10.3389/fnbeh.2019.00250
Zheng G, Lin L, Zhong S, Zhang Q, Li D (2015) Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice. PLoS ONE 10:e0122925. https://doi.org/10.1371/journal.pone.0122925
Zhou Y, Rui L (2013) Leptin signaling and leptin resistance. Front Med 7:207–222. https://doi.org/10.1007/s11684-013-0263-5