Thiết kế Cân bằng Theo Cặp với Kích Thước Khối Liên Tiếp
Tóm tắt
Từ khóa
#Thiết kế cân bằng theo cặp #kích thước khối #lý thuyết thiết kế thống kêTài liệu tham khảo
R. J. R. Abel, Some new BIBDS with λ = 1 and 6 ≤ k ≤ 10, J. Combinatorial Designs, Vol. 4 (1996) pp. 27–50.
R. J. R. Abel, A. E. Brouwer, C. J. Colbourn and J. H. Dinitz, Mutually orthogonal latin squares (MOLS), CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC (1996) pp. 111–141.
R. J. R. Abel and M. Greig, BIBDs with small block size, in: CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC (1996) pp. 41–47.
R. J. R. Abel and M. Greig, Resolvable balanced incomplete block designs with a block size of 8, preprint.
R. J. R. Abel and W. H. Mills, Some new BIBDS with k = 6 and λ = 1, J. Combinatorial Designs, Vol. 3 (1995) pp. 381–391.
L. M. Batten, Linear spaces with line range {n − 1, n, n + 1} and at most n 2 points, J. Austral. Math. Soc. (A), Vol. 30 (1980) pp. 215–228.
F. E. Bennett, C. J. Colbourn and R. C. Mullin, Quintessential pairwise balanced designs, preprint.
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, England (1986).
C. J. Colbourn and J. H. Dinitz, Making the MOLS table, Constructive and Computational Design Theory, Kluwer Academic Press (to appear).
C. J. Colbourn, J. H. Dinitz and M. Wojtas, Thwarts in transversal designs, Designs, Codes and Cryptography, Vol. 5 (1995) pp. 189–197.
S. Furino, J. Yin and Y. Miao, Frames and Resolvable Designs, CRC, Boca Raton, FL (to appear).
M. Greig, Design from projective planes, and PBD bases and designs from configurations in projective planes, unpublished, 1992.
A. M. Hamel, W. H. Mills, R. C. Mullin, R. Rees, D. R. Stinson and J. Yin, The spectrum of PBD(5,k b7,v) for k = 9, 13, Ars Combinatoria, Vol. 36 (1993) pp. 7–26.
H. Lenz, Some remarks on pairwise balanced designs, Mitt. Math. Sem. Giessen, Vol. 165 (1984) pp. 49–62.
A. C. H. Ling and C. J. Colbourn, Deleting lines in projective planes, Ars Combinatoria (to appear).
R. C. Mullin, B. Gardner, K. Metsch and G. H. J. van Rees, Some properties of finite bases for the Rosa set, Utilitas Mathematica, Vol. 38 (1990) pp. 199–215.
R. C. Mullin and H. D. O. F. Gronau, PBDs: recursive constructions, CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC (1996) pp. 193–203.