Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight

Journal of Differential Equations - Tập 252 - Trang 2900-2921 - 2012
Alberto Boscaggin1, Fabio Zanolin2
1SISSA/ISAS – International School for Advanced Studies, via Bonomea, 265,34136 Trieste, Italy
2University of Udine, Department of Mathematics and Computer Science, via delle Scienze 206, 33100 Udine, Italy

Tài liệu tham khảo

Ahmad, 1976, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J., 25, 933, 10.1512/iumj.1976.25.25074 Alama, 1993, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1, 439, 10.1007/BF01206962 Amann, 1972, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11, 346, 10.1016/0022-1236(72)90074-2 Amann, 1976, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620, 10.1137/1018114 Amann, 1998, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146, 336, 10.1006/jdeq.1998.3440 Bandle, 1987, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303, 487, 10.1090/S0002-9947-1987-0902780-3 Bandle, 1988, Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z., 199, 257, 10.1007/BF01159655 Berestycki, 1995, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2, 553, 10.1007/BF01210623 Bonheure, 2005, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214, 36, 10.1016/j.jde.2004.08.009 Boscaggin, 2011, A note on a superlinear indefinite Neumann problem with multiple positive solutions, J. Math. Anal. Appl., 377, 259, 10.1016/j.jmaa.2010.10.042 Boscaggin, 2012, Positive periodic solutions of second order nonlinear equations with indefinite weight: Multiplicity results and complex dynamics, J. Differential Equations, 252, 2922, 10.1016/j.jde.2011.09.010 Bravo, 2010, Periodic solutions of a singular equation with indefinite weight, Adv. Nonlinear Stud., 10, 927, 10.1515/ans-2010-0410 Brown, 2007, Local and global bifurcation results for a semilinear boundary value problem, J. Differential Equations, 239, 296, 10.1016/j.jde.2007.05.013 Butler, 1976, Rapid oscillation, nonextendability, and the existence of periodic solutions to second order nonlinear ordinary differential equations, J. Differential Equations, 22, 467, 10.1016/0022-0396(76)90041-3 Butler, 1978, Periodic solutions of sublinear second order differential equations, J. Math. Anal. Appl., 62, 676, 10.1016/0022-247X(78)90157-9 Capietto, 2002, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181, 419, 10.1006/jdeq.2001.4080 Chang, 2009, Morse theory for indefinite nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 139, 10.1016/j.anihpc.2007.08.004 De Coster, 2006 de Figueiredo, 1982, Positive solutions of semilinear elliptic problems, vol. 957, 34 Gaudenzi, 2004, A seven-positive-solutions theorem for a superlinear problem, Adv. Nonlinear Stud., 4, 149, 10.1515/ans-2004-0202 Gómez-Reñasco, 2000, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction–diffusion equations, J. Differential Equations, 167, 36, 10.1006/jdeq.2000.3772 Hale, 1980 Kiguradze, 1967, A note on the oscillation of solutions of the equation u″+a(t)|u|nsgnu=0, Časopis Pěst. Mat., 92, 343, 10.21136/CPM.1967.108395 Le, 1995, Minimization problems for noncoercive functionals subject to constraints, Trans. Amer. Math. Soc., 347, 4485, 10.2307/2155048 Lions, 1982, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24, 441, 10.1137/1024101 López-Gómez, 2000, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352, 1825, 10.1090/S0002-9947-99-02352-1 Manásevich, 1995, Positive solutions for the one-dimensional p-Laplacian, Differential Integral Equations, 8, 213, 10.57262/die/1411134162 Mawhin, 1989, Critical Point Theory and Hamiltonian Systems, vol. 74 Papalini, 2009, Pairs of positive solutions for the periodic scalar p-Laplacian, J. Fixed Point Theory Appl., 5, 157, 10.1007/s11784-008-0061-x Papini, 2000, A topological approach to superlinear indefinite boundary value problems, Topol. Methods Nonlinear Anal., 15, 203, 10.12775/TMNA.2000.017 Papini, 2004, On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hillʼs equations, Adv. Nonlinear Stud., 4, 71, 10.1515/ans-2004-0105 Rabinowitz, 1973, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J., 23, 173, 10.1512/iumj.1974.23.23014 Tang, 1998, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 126, 3263, 10.1090/S0002-9939-98-04706-6 Terracini, 2000, Oscillating solutions to second order ODEs with indefinite superlinear nonlinearities, Nonlinearity, 13, 1501, 10.1088/0951-7715/13/5/305 Torres, 2003, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190, 643, 10.1016/S0022-0396(02)00152-3 Waltman, 1965, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl., 10, 439, 10.1016/0022-247X(65)90138-1 Wong, 2000, Oscillation criteria for second order nonlinear differential equations involving general means, J. Math. Anal. Appl., 247, 489, 10.1006/jmaa.2000.6855