Painless Gabor expansions on homogeneous manifolds

Applied and Computational Harmonic Analysis - Tập 26 - Trang 200-211 - 2009
H. Führ1
1Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen, Germany

Tài liệu tham khảo

Abraham, 1967 Antoine, 2008, The continuous wavelet transform on conic sections, Int. J. Wavelets Multiscale Inform. Process., 6, 137, 10.1142/S0219691308002288 Antoine, 2002, Wavelets on the sphere: Implementation and approximations, Appl. Comput. Harmon. Anal., 13, 177, 10.1016/S1063-5203(02)00507-9 Calixto, 2006, Wavelet transform on the circle and the real line: A unified group-theoretical treatment, Appl. Comput. Harmon. Anal., 21, 204, 10.1016/j.acha.2006.02.001 Coifman, 2006, Diffusion wavelets, Appl. Comput. Harmon. Anal., 21, 53, 10.1016/j.acha.2006.04.004 Dahlke, 2004, Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere, Adv. Comput. Math., 21, 147, 10.1023/B:ACOM.0000016435.42220.fa Daubechies, 1986, Painless nonorthogonal expansions, J. Math. Phys., 27, 1271, 10.1063/1.527388 De Bièvre, 1989, Coherent states over symplectic homogeneous spaces, J. Math. Phys., 30, 1401, 10.1063/1.528321 Freeden, 2006, Multiresolution analysis by spherical up functions, Constr. Approx., 23, 241, 10.1007/s00365-005-0613-x Führ, 2005, Abstract Harmonic Analysis of Continuous Wavelet Transforms, vol. 1863 Roşca, 2007, Wavelet bases on the sphere obtained by radial projection, J. Fourier Anal. Appl., 13, 421, 10.1007/s00041-006-6014-z Torrésani, 1995, Position–frequency analysis for signals defined on spheres, Signal Process., 43, 341, 10.1016/0165-1684(95)00037-E Torrésani, 1995 Varadarajan, 1974