Pain in neuromyelitis optica—prevalence, pathogenesis and therapy

Nature Reviews Neurology - Tập 10 Số 9 - Trang 529-536 - 2014
Monika Bradl1, Yoko Kanamori2, Ichiro Nakashima3, Tatsuro Misu3, Kazuo Fujihara3, Hans Lassmann4, Jürgen Sandkühler5
1Medical University of Vienna, Center for Brain Research, Department of Neuroimmunology, Spitalgasse 4, 1170 Vienna, Austria.
2Tohoku University Graduate School of Medicine, Department of Multiple Sclerosis Therapeutics and Neurology, 1-1 Seiryomachi, Aobaku, Sendai 980-8574, Japan.
3Department of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, Aobaku, Japan
4Department of Neuroimmunology, Medical University of Vienna, Center for Brain Research, Vienna, Austria
5Medical University of Vienna, Center for Brain Research, Deptartment of Neurophysiology, Spitalgasse 4, 1170 Vienna, Austria.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wingerchuk, D. M., Lennon, V. A., Lucchinetti, C. F., Pittock, S. J. & Weinshenker, B. G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).

Papadopoulos, M. C. & Verkman, A. S. Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 14, 265–277 (2013).

Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–683 (2013).

Bradl, M. et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann. Neurol. 66, 630–643 (2009).

Bennett, J. L. et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66, 617–629 (2009).

Kinoshita, M. et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem. Biophys. Res. Commun. 386, 623–627 (2009).

Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica imunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133, 349–361 (2010).

Bradl, M. & Lassmann, H. Experimental models of neuromyelitis optica. Brain Pathol. 24, 74–82 (2014).

Sato, D. K., Lana-Peixoto, M. A., Fujihara, K. & de Seze, J. Clinical spectrum and treatment of neuromyelitis optica spectrum disorders: evolution and current status. Brain Pathol. 23, 647–660 (2013).

Kanamori, Y. et al. Pain in neuromyelitis optica and its effect on quality of life: a cross-sectional study. Neurology 77, 652–658 (2011).

Qian, P. et al. Association of neuromyelitis optica with severe and intractable pain. Arch. Neurol. 69, 1482–1487 (2012).

Zhao, S., Mutch, K., Elsone, L., Nurmikko, T. & Jacob, A. Neuropathic pain in neuromyelitis optica affects activities of daily living and quality of life. Mult. Scler. http://dx.doi.org/10.1177/1352458514522103.

Pellkofer, H. L. et al. The major brain endocannabinoid 2-AG controls neuropathic pain and mechanical hyperalgesia in patients with neuromyelitis optica. PLoS ONE 8, e71500 (2013).

Kim, S. M., Go, M. J., Sung, J. J., Park, K. S. & Lee, K. W. Painful tonic spasm in neuromyelitis optica: incidence, diagnostic utility, and clinical characteristics. Arch. Neurol. 69, 1026–1031 (2012).

Evangelopoulos, M. E. et al. Neuromyelitis optica spectrum disease with positive autoimmune indices: a case report and review of the literature. Case Rep. Med. 2011, 393568 (2011).

Elsone, L. et al. Neuropathic pruritus (itch) in neuromyelitis optica. Mult. Scler. 19, 475–479 (2013).

Milligan, E. D. & Watkins, L. R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6, 521–532 (2005).

Xanthos, D. N. & Sandkühler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014).

Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

Lu, Y. & Perl, E. R. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J. Physiol. 582, 127–136 (2007).

Sandkühler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89, 707–758 (2009).

Lucchinetti, C. F. et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125, 1450–1461 (2002).

Misu, T. et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in the lesions of neuromyelitis optica. Acta Neuropathol. 125, 815–827 (2013).

Lucchinetti, C. F. et al. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 24, 83–97 (2014).

Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflammation 9, 14 (2012).

Wingerchuk, D. M., Hogancamp, W. F., O'Brien, P. C. & Weinshenker, B. G. The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 53, 1107–1114 (1999).

Collongues, N. et al. Neuromyelitis optica in France: a multicenter study of 125 patients. Neurology 74, 736–742 (2010).

Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

Nakamura, M. et al. Preferential spinal central gray matter involvement in neuromyelitis optica. An MRI study. J. Neurol. 255, 163–170 (2008).

Roemer, S. F. et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130, 1194–1205 (2007).

Misu, T., Fujihara, K., Nakashima, I., Sato, S. & Itoyama, Y. Intractable hiccup and nausea with periaqueductal lesions in neuromyelitis optica. Neurology 65, 1479–1482 (2005).

Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

Rossi, A., Ratelade, J., Papadopoulos, M. C., Bennett, J. L. & Verkman, A. S. Neuromyelitis optica IgG does not alter aquaporin-4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly. Glia 60, 2027–2039 (2012).

Hinson, S. R. et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J. Exp. Med. 205, 2473–2481 (2008).

Marignier, R. et al. Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133, 2578–2591 (2010).

Matsuoka, T., Suzuki, S. O., Suenaga, T., Iwaki, T. & Kira, J. Reappraisal of aquaporin-4 astrocytopathy in Asian neuromyelitis optica and multiple sclerosis patients. Brain Pathol. 21, 516–532 (2011).

Matsushita, T. et al. Astrocytopathy in neuromyelitis optica, multiple sclerosis and Balo's disease [Japanese]. Rinsho Shinkeigaku 51, 898–900 (2011).

Sharma, R. et al. Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol. 120, 223–236 (2010).

Parratt, J. D. & Prineas, J. W. Neuromyelitis optica: a demyelinating disease characterized by acute destruction and regeneration of perivascular astrocytes. Mult. Scler. 16, 1156–1172 (2010).

Nishiyama, S. et al. A case of NMO seropositive for aquaporin-4 antibody more than 10 years before onset. Neurology 72, 1960–1961 (2009).

Uzawa, A., Masahiro, M. & Kuwabara, S. Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications. Brain Pathol. 24, 67–73 (2014).

Olechowski, C. J., Truong, J. J. & Kerr, B. J. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141, 156–164 (2009).

Gruber-Schoffnegger, D. et al. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J. Neurosci. 33, 6540–6551 (2013).

Park, C. K. et al. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 31, 15072–15085 (2011).

Ikeda, H. et al. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312, 1659–1662 (2006).

Drdla, R., Gassner, M., Gingl, E. & Sandkühler, J. Induction of synaptic long-term potentiation after opioid withdrawal. Science 325, 207–210 (2009).

Meng, X. et al. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 154, 294–305 (2013).

Nakatsuka, T., Tsuzuki, K., Ling, J. X., Sonobe, H. & Gu, J. G. Distinct roles of P2X receptors in modulating glutamate release at different primary sensory synapses in rat spinal cord. J. Neurophysiol. 89, 3243–3252 (2003).

Hansen, R. R. & Malcangio, M. Astrocytes—multitaskers in chronic pain. Eur. J. Pharmacol. 716, 120–128 (2013).

Donnelly-Roberts, D., McGaraughty, S., Shieh, C. C., Honore, P. & Jarvis, M. F. Painful purinergic receptors. J. Pharmacol. Exp. Ther. 324, 409–415 (2008).

Jarius, S. & Wildemann, B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 6, 383–392 (2010).

Moga, D., Hof, P. R., Vissavajjhala, P., Moran, T. M. & Morrison, J. H. Parvalbumin-containing interneurons in rat hippocampus have an AMPA receptor profile suggestive of vulnerability to excitotoxicity. J. Chem. Neuroanat. 23, 249–253 (2002).

Zeilhofer, H. U., Wildner, H. & Yevenes, G. E. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol. Rev. 92, 193–235 (2012).

Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

Susser, E., Sprecher, E. & Yarnitsky, D. Paradoxical heat sensation in healthy subjects: peripherally conducted by Aδ or C fibres? Brain 122, 239–246 (1999).

Sigel, E. et al. The major central endocannabinoid directly acts at GABAA receptors. Proc. Natl Acad. Sci. USA 108, 18150–18155 (2011).

Kallendrusch, S. et al. Intrinsic up-regulation of 2-AG favors an area specific neuronal survival in different in vitro models of neuronal damage. PLoS ONE 7, e51208 (2012).

Martinez-Hernandez, A., Bell, K. P. & Norenberg, M. D. Glutamine synthetase: glial localization in brain. Science 195, 1356–1358 (1977).

Albrecht, J., Sidoryk-Wegrzynowicz, M., Zielinska, M. & Aschner, M. Roles of glutamine in neurotransmission. Neuron Glia Biol. 6, 263–276 (2010).

Behbehani, M. M. Functional characteristics of the midbrain periaqueductal gray. Prog. Neurobiol. 46, 575–605 (1995).

Kremer, L. et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult. Scler. http://dx.doi.org/10.1177/1352458513507822.

Verkman, A. S., Phuan P.-W., Asavapanumas, N. & Tradtrantip, L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol. 23, 684–695 (2013).

Kumar, A. & Loane, D. J. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav. Immun. 26, 1191–1201 (2012).

Wang, X. et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc. Natl Acad. Sci. USA 109, 6325–6330 (2012).

Wallace, M. S., Lam, V. & Schettler, J. NGX426, an oral AMPA-kainate antagonist, is effective in human capsaicin-induced pain and hyperalgesia. Pain Med. 13, 1601–1610 (2012).

Volpi, C., Fazio, F. & Fallarino, F. Targeting metabotropic glutamate receptors in neuroimmune communication. Neuropharmacology 63, 501–506 (2012).

Sandkühler, J. & Lee, J. How to erase memory traces of pain and fear. Trends Neurosci. 36, 343–352 (2013).

Drdla-Schutting, R., Benrath, J., Wunderbaldinger, G. & Sandkühler, J. Erasure of a spinal memory trace of pain by a brief, high-dose opioid administration. Science 335, 235–238 (2012).

Taira, T. et al. A new approach to control central deafferentation pain: spinal intrathecal baclofen. Stereotact. Funct. Neurosurg. 65, 101–105 (1995).

Dykstra, D., Stuckey, M., DesLauriers, L., Chappuis, D. & Krach, L. Intrathecal baclofen in the treatment of spasticity. Acta Neurochir. Suppl. 97, 163–171 (2007).

Rog, D. J., Nurmikko, T. J., Friede, T. & Young, C. A. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 27, 812–819 (2005).

Hunt, S. P. & Mantyh, P. W. The molecular dynamics of pain control. Nat. Rev. Neurosci. 2, 83–91 (2001).

Pittock, S. J. et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch. Neurol. 63, 964–968 (2006).

Kitic, M. et al. Intrastriatal injection of interleukin 1 β triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathol. Commun. 1, 5 (2013).

Uzawa, A. et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult. Scler. 16, 1443–1452 (2010).

Uzawa, A. et al. Markedly increased CSF interleukin-6 levels in neuromyelitis optica, but not in multiple sclerosis. J. Neurol. 256, 2082–2084 (2009).

Icoz, S. et al. Enhanced IL-6 production in aquaporin-4 antibody positive neuromyelitis optica patients. Int. J. Neurosci. 120, 71–75 (2010).

Wei, X. H. et al. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp. Neurol. 241, 159–168 (2013).

Guptarak, J. et al. Inhibition of IL-6 signaling: a novel therapeutic approach to treating spinal cord injury pain. Pain 154, 1115–1128 (2013).

DeLeo, J. A., Colburn, R. W., Nichols, M. & Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res. 16, 695–700 (1996).

Arruda, J. L., Sweitzer, S., Rutkowski, M. D. & DeLeo, J. A. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res. 879, 216–225 (2000).

Araki, M. et al. Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab. Mod. Rheumatol. 23, 827–831 (2013).

Ishizu, T. et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128, 988–1002 (2005).

Wang, H. et al. Interleukin 17 gene polymorphism is associated with anti-aquaporin 4 antibody-positive neuromyelitis optica in the Southern Han Chinese—a case control study. J. Neurol. Sci. 314, 26–28 (2012).

Wang, H. H. et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J. Clin. Neurosci. 18, 1313–1317 (2011).

Wang, K. C. et al. Elevated plasma high-mobility group box 1 protein is a potential marker for neuromyelitis optica. Neuroscience 226, 510–516 (2012).

Ren, P. C. et al. High-mobility group box 1 contributes to mechanical allodynia and spinal astrocytic activation in a mouse model of type 2 diabetes. Brain Res. Bull. 88, 332–337 (2012).