Pain-associated signals, acidosis and lysophosphatidic acid, modulate the neuronal K2P2.1 channel

Molecular and Cellular Neurosciences - Tập 40 - Trang 382-389 - 2009
Asi Cohen1, Revital Sagron1, Erez Somech1, Yifat Segal-Hayoun1, Noam Zilberberg1
1Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Tài liệu tham khảo

Aimond, 2000, Simultaneous activation of p38 MAPK and p42/44 MAPK by ATP stimulates the K+ current ITREK in cardiomyocytes, J. Biol. Chem., 275, 39110, 10.1074/jbc.M008192200 Alloui, 2006, TREK-1, a K+ channel involved in polymodal pain perception, EMBO J., 25, 2368, 10.1038/sj.emboj.7601116 Baker, 2001, Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography–mass spectrometry, Anal. Biochem., 292, 287, 10.1006/abio.2001.5063 Barel, 2008, Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9, Am. J. Hum. Genet., 83, 193, 10.1016/j.ajhg.2008.07.010 Baumann, 2004, Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain, Eur. J. Neurosci., 19, 1343, 10.1111/j.1460-9568.2004.03097.x Bockenhauer, 2001, KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel, Nat. Neurosci., 4, 486, 10.1038/87434 Brickley, 2007, TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons, J. Neurosci., 27, 9329, 10.1523/JNEUROSCI.1427-07.2007 Chemin, 2003, Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels, EMBO J., 22, 5403, 10.1093/emboj/cdg528 Chemin, 2005, Lysophosphatidic acid-operated K+ channels, J. Biol. Chem., 280, 4415, 10.1074/jbc.M408246200 Chemin, 2005, A phospholipid sensor controls mechanogating of the K+ channel TREK-1, EMBO J., 24, 44, 10.1038/sj.emboj.7600494 Chesler, 2003, Regulation and modulation of pH in the brain, Physiol. Rev., 83, 1183, 10.1152/physrev.00010.2003 Cohen, 2006, Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements, J. Neurosci. Methods, 153, 62, 10.1016/j.jneumeth.2005.10.005 Cohen, 2008, A novel mechanism for human K2P2.1 channel gating: facilitation of C-type gating by protonation of extracellular histidine residues, J. Biol. Chem., 283, 19448, 10.1074/jbc.M801273200 Deitmer, 1996, pH regulation and proton signalling by glial cells, Prog. Neurobiol., 48, 73, 10.1016/0301-0082(95)00039-9 Elmes, 2004, Evidence for biological effects of exogenous LPA on rat primary afferent and spinal cord neurons, Brain Res., 1022, 205, 10.1016/j.brainres.2004.07.005 Fink, 1996, Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel, EMBO J., 15, 6854, 10.1002/j.1460-2075.1996.tb01077.x Goldstein, 2001, Potassium leak channels and the KCNK family of two-P-domain subunits, Nat. Rev. Neurosci., 2, 175, 10.1038/35058574 Griffiths, 1991, Are cancer cells acidic?, Br. J. Cancer, 64, 425, 10.1038/bjc.1991.326 Heurteaux, 2004, TREK-1, a K+ channel involved in neuroprotection and general anesthesia, EMBO J., 23, 2684, 10.1038/sj.emboj.7600234 Heurteaux, 2006, Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype, Nat. Neurosci., 9, 1134, 10.1038/nn1749 Honore, 2007, The neuronal background K2P channels: focus on TREK1, Nat. Rev. Neurosci., 8, 251, 10.1038/nrn2117 Huang, 2007, Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors, Mol. Cell. Neurosci., 36, 195, 10.1016/j.mcn.2007.06.010 Julius, 2001, Molecular mechanisms of nociception, Nature, 413, 203, 10.1038/35093019 Kimura, 2001, Two novel Xenopus homologs of mammalian LP(A1)/EDG-2 function as lysophosphatidic acid receptors in Xenopus oocytes and mammalian cells, J. Biol. Chem., 276, 15208, 10.1074/jbc.M011588200 Koh, 2001, TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission, J. Biol. Chem., 276, 44338, 10.1074/jbc.M108125200 La, 2006, A novel acid-sensitive K+ channel in rat dorsal root ganglia neurons, Neurosci. Lett., 406, 244, 10.1016/j.neulet.2006.07.039 Lopes, 2005, PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels, J. Physiol., 564, 117, 10.1113/jphysiol.2004.081935 Lopes, 2007, Protein kinase A modulates PLC-dependent regulation and PIP2-sensitivity of K+ channels, Channels (Austin), 1, 124, 10.4161/chan.4322 Ludwig, 2003, Proton-sensing G-protein-coupled receptors, Nature, 425, 93, 10.1038/nature01905 Maingret, 1999, Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel, J. Biol. Chem., 274, 26691, 10.1074/jbc.274.38.26691 Maingret, 2000, TREK-1 is a heat-activated background K+ channel, EMBO J., 19, 2483, 10.1093/emboj/19.11.2483 Maingret, 2000, Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK, J. Biol. Chem., 275, 10128, 10.1074/jbc.275.14.10128 Mantyh, 2002, Molecular mechanisms of cancer pain, Nat. Rev. Cancer, 2, 201, 10.1038/nrc747 Meadows, 2000, Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel, Pflugers Arch., 439, 714, 10.1007/s004249900235 Medhurst, 2001, Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery, Brain Res. Mol. Brain Res., 86, 101, 10.1016/S0169-328X(00)00263-1 Mulkey, 2007, TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity, J. Neurosci., 27, 14049, 10.1523/JNEUROSCI.4254-07.2007 Murbartian, 2005, Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels, J. Biol. Chem., 280, 30175, 10.1074/jbc.M503862200 Oron, 1985, Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes, Nature, 313, 141, 10.1038/313141a0 Parrill, 2005, Structural characteristics of lysophosphatidic acid biological targets, Biochem. Soc. Trans., 33, 1366, 10.1042/BST0331366 Patel, 1998, A mammalian two pore domain mechano-gated S-like K+ channel, EMBO J., 17, 4283, 10.1093/emboj/17.15.4283 Reeh, 1996, Tissue acidosis in nociception and pain, Prog. Brain Res., 113, 143, 10.1016/S0079-6123(08)61085-7 Sengupta, 2004, Biology of LPA in health and disease, Semin. Cell Dev. Biol., 15, 503, 10.1016/j.semcdb.2004.05.003 Seung Lee, 2005, Effects of lysophosphatidic acid on sodium currents in rat dorsal root ganglion neurons, Brain Res., 1035, 100, 10.1016/j.brainres.2004.12.026 Smith, 1986, Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats, J. Cereb. Blood Flow Metab., 6, 574, 10.1038/jcbfm.1986.104 Talley, 2001, Cns distribution of members of the two-pore-domain (KCNK) potassium channel family, J. Neurosci., 21, 7491, 10.1523/JNEUROSCI.21-19-07491.2001 Thomas, 2008, Alternative translation initiation in rat brain yields K(2P)2.1 potassium channels permeable to sodium, Neuron, 58, 859, 10.1016/j.neuron.2008.04.016 Ueda, 2006, Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms, Pharmacol. Ther., 109, 57, 10.1016/j.pharmthera.2005.06.003 Voloshyna, 2008, TREK-1 is a novel molecular target in prostate cancer, Cancer Res., 68, 1197, 10.1158/0008-5472.CAN-07-5163 von Hanwehr, 1986, Extra- and intracellular pH during near-complete forebrain ischemia in the rat, J. Neurochem., 46, 331, 10.1111/j.1471-4159.1986.tb12973.x Westermann, 1998, Malignant effusions contain lysophosphatidic acid (LPA)-like activity, Ann. Oncol., 9, 437, 10.1023/A:1008217129273 Xu, 1995, Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients, Clin. Cancer Res., 1, 1223