Packing circular-like objects in a rectangular container

Igor Litvinchev1, Luis Infante1, Lucero Ozuna2
1Computing Center Russian Academy of Sciences, Russia, Moscow
2Faculty of Mechanical and Electrical Engineering, UANL, Mexico, Monterrey

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. Fasano, Solving Non-standard Packing Problems by Global Optimization and Heuristics (Springer, 2014).

M. Hifi and R. M’Hallah, “A literature review on circle and sphere packing problems: models and methodologies,” Advances Oper. Res., (2009), Article ID 150624, doi:l0.1155/2009/150624.

E. Baltacioglu, J. T. Moore, and R. R. Hill, “The distributor’s three-dimensional pallet-packing problem: A human-based heuristical approach,” Int. J. Oper. Res. 1, 249–266 (2006).

M. H. Correia, J. F. Oliveira, and J. S. Ferreira, “Cylinder packing by simulated annealing,” Pesquisa Operacional. 20, 269–286 (2000).

H. J. Frazer and J. A. George, “Integrated container loading software for pulp and paper industry,” Eur. J. Oper. Res. 77, 466–474 (1994).

I. Castillo, F. J. Kampas, and J. D. Pinter, “Solving circle packing problems by global optimization: Numerical results and industrial applications,” Eur. J. Oper. Res. 191, 786–802 (2008).

J. A. George, “Multiple container packing: A case study of pipe packing,” J. Oper. Res. Soc. 47, 1098–1109 (1996).

H. Akeb and M. Hifi, “Solving the circular open dimension problem using separate beams and look-ahead strategies,” Comput. & Oper. Res. 40, 1243–1255 (2013).

E. G. Birgin and J. M. Gentil, “New and improved results for packing identical unitary radius circles within triangles, rectangles and strips,” Comput. & Oper. Res. 37, 1318–1327 (2010).

C. O. Lopez and J. E. Beasley, “A heuristic for the circle packing problem with a variety of containers,” Eur. J. Oper. Res. 214, 512–525 (2011).

C. O. Lopez and J. E. Beasley, “Packing unequal circles using formulation space search,” Comput. & Oper. Res. 40, 1276–1288 (2013).

Y. G. Stoyan and G. N. Yaskov, “Packing congruent spheres into a multi-connected polyhedral domain,” Int. Trans. Oper. Res. 20, 79–99 (2013).

J. E. Beasley, “An exact two-dimensional non-guillotine cutting tree search procedure,” Oper. Res. 33, 49–64 (1985).

S. I. Galiev and M. S. Lisafina, “Linear models for the approximate solution of the problem of packing equal circles into a given domain,” Eur. J. Oper. Res. 230, 505–514 (2013).

I. Litvinchev and L. Ozuna, “Packing circles in a rectangular container,” in Proc. of the Int. Congr. on Logistics and Supply Chain, Queretaro, Mexico, 2013, pp. 24–30.

I. Litvinchev and L. Ozuna, “Integer programming formulations for approximate packing circles in a rectangular container,” Mathematical Problems in Engineering, (2014), Article ID 317697, doi: 10.1155/2014/317697.

I. Litvinchev and L. Ozuna, “Approximate packing circles in a rectangular container: valid inequalities and nesting,” J. Appl. Res. Technol. 12, 716–723 (2014).

I. Litvinchev, L. Infante, and L. Ozuna, “Approximate circle packing in a rectangular container: Integer programming formulations and valid inequalities,” Lect. Notes Comput. Sci. 8760, 47–61 (2014).

F. M. B. Toledo, M. A. Carravilla, C. Ribero, J. F. Oliveira, and A. M. Gomes, “The dotted-board model: A new MIP model for nesting irregular shapes,” Int. J. Production Economics 145, 478–487 (2013).

L. A. Wolsey, Integer Programming (Wiley, N.Y., 1999).

J. A. George, J. M. George, and B. W. Lamar, “Packing different-sized circles into a rectangular container,” Eur. J. Oper. Res. 84, 693–712 (1995).

I. Litvinchev, S. Rangel, M. Mata, and J. Saucedo, “Studying properties of Lagrangian bounds for many-to-many assignment problems,” J. Comput. Syst. Sci. Int. 48, 363–369 (2009).

A. A. Mironov, T. A. Levkina, V. I. Tsurkov, “Minimax estimations of arc weights in integer networks with fixed node degrees,” Appl. Comput. Math. 8(2), 216–226 (2009).

A. A. Mironov and V. I. Tsurkov, “Class of distribution problems with minimax criterion,” Dokl. Akad. Nauk Ross. Akad. Nauk 336(1), 35–38 (1994).

A. P. Tizik and V. I. Tsurkov, “Iterative functional modification method for solving a transportation problem,” Autom. Remote Control 73, 134–143 (2012).

A. A. Mironov and V. I. Tsurkov, “Transport problems with a minimax criterion,” Doklady Akademii Nauk 346(2), 168–171 (1996).

A. A. Sokolov, A. P. Tizik, and V. I. Tsurkov, “Iterative method for the transportation problem with additional supply and consumption points and quadratic cost,” J. Comput. Syst. Sci. Int. 52(4), 588–598 (2013).

A. A. Mironov and V. I. Tsurkov, “Hereditarily minimax matrices in models of transportation type,” J. Comput. Syst. Sci. Int. 37(6), 927–944 (1998).

V. I. Tsurkov, “An iterative method of the decomposition for extremum problems,” Dokl. Akad. Nauk SSSR 250, 304–307 (1980).

D. V. Alifanov, V. N. Lebedev, and V. I. Tsurkov, “Optimization of schedules with precedence logical conditions,” J. Comput. Syst. Sci. Int. 48(6), 932–936 (2009).

A. A. Mironov and V. I. Tsurkov, “Closed transportation models with minimax criterion,” Autom. Remote Control 63, 388–398 (2002).

A. A. Mironov and V. I. Tsurkov, “Open transportation models with a minimax criterion,” Dokl. Math. 64, 374–377 (2001).

A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication nodes. 1,” J. Comput. Syst. Sci. Int. 33(3), 107–116 (1995).

A. A. Mironov and V. I. Tsurkov, “Network models with fixed parameters at the communication Nodes. 2,” J. Comput. Syst. Sci. Int. 32(6), 1–11 (1994).

A. P. Tizik and V. I. Tsurkov, “Optimal channel distribution in communications networks,” Soviet J. Comput. Syst. Sci. 28(2), 24–31 (1990).

A. S. Esenkov, D. I. Kuzovlev, V. Yu. Leonov, et al., “Network optimization and problems with coupling variables,” J. Comput. Syst. Sci. Int. 53(3), 369–383 (2014).

A. V. Mokryakov and V. I. Tsurkov, “Reconstructing 2-complexes by a nonnegative integer-valued vector,” Autom. Remote Control 72(12), 2541–2552 (2011).