Packer identification using Byte plot and Markov plot

Kesav Kancherla1, James P. Donahue2, Srinivas Mukkamala1
1Computer Science Institute for Complex Additive and System Analysis, New Mexico Institute of Mining and Technology, Socorro, NM, USA
2Computer Science, New Mexico Institute of Mining and Technology, Socorro, NM, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Symantec, Internet Security Threat Report, 2011 trends, Vol. 17 Main Report, April 2012. Retrieved on 8/10/2012 http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf

Dell Sonic wall Inc, Anatomy of a cyber-attack, Retrieved on 8/10/2012. http://www.sonicwall.com/downloads/EB_Anatomy_of_a_CyberAttack_Final.pdf

Yan, W., Zhang, Z., Ansari, N.: Revealing packed malware. IEEE Secur. Priv. 7(5), 65–69 (2008). doi: 10.1109/MSP.2008.126

Shadowserver, Packer Statistics, The Shadowserver Foundation, http://www.shadowserver.org/wiki/pmwiki.php/Stats/PackerStatistics

Armadillo, Digital River Accessed on June 2014 http://www.digitalriver.com/Armadillo

Themida Advanced windows software protection system. Accessed on June 2014 http://www.oreans.com/themida.php

PECompact Powerful executable compression for software developers and vendors. Accessed on June 2014 http://bitsum.com/pecompact/

Installshield Software Installation Solution Accessed on June 2014 http://www.installshield.com/

Ultimate Packer for Executables UPX Accessed on June 2014 http://upx.sourceforge.net/

Telock - free PE-File Encryptor/-Compressor Accessed on June 2014 http://www.telock.com-about.com

Ban, T., Isawa, R., Guo, S., Inoue, D., Nakao, K.: Efficient malware packer identification using support vector machines with spectrum kernel. In: AsiaJCIS pp. 69–76 (2013)

PEiD, most recent release (PEiD 0.95) could be downloaded from http://www.softpedia.com/

Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed malware. IEEE Secur. Priv. 5, 40–45 (2007)

Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate computer virus detection. Pattern Recogn. Lett. 29, 1941–1946 (2008)

Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

Sun, L., Versteeg, S., Boztaş, S., Yann, T.: Pattern recognition techniques for the classification of malware packers. In: Proceedings of the 15th Australasian Conference on Information Security and Privacy, ser. ACISP’10. Springer, Berlin, pp. 370–390 (2010)

Ugarte-Pedrero, X., Santos, I., Bringas, P.G.: Structural feature based anomaly detection for packed executable identification. In: Proceedings of the 4th International Conference on Computational Intelligence in Security for Information Systems (CISIS), pp. 50–57 (2011)

Stewart, J.: OllyBonE v0.1, Break-on-Execute for OllyDbg (2006)

Valsmith, Q.D.: Covert debugging: circumventing software armoring techniques, Black Hat USA (2007)

Martignoni, L., Christodorescu, M., Jha, S.: OmniUnpack: fast, generic, and safe unpacking of malware. In: 23rd Annual Computer Security Applications Conference (ACSAC) (2007)

Shafiq, M., Tabish, S., Farooq, M.: PE-Probe: leveraging packer detection and structural information to detect malicious portable executables. In: Proceedings of the Virus Bulletin Conference (VB), pp. 29–33 (2009)

Farooq, M.: PE-Miner: mining structural information to detect malicious ex-ecutables in realtime. In: Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection (RAID). Springer, Heidelberg, pp. 121–141 (2009)

Ban, T., Nakao, K.: Application of string kernel based support vector machine for malware packer identification. In: Proceedings of the 2013 International Joint Conference on Neural Networks, ser. IJCNN’13. San Francisco, CA: Morgan Kaufmann Publishers Inc. (2013)

Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10, 707 (1966)

Conti, G., Bratus, S., Shubina, A., Lichtenberg, A., Ragsdale, R., Perez-Alemany, R., Sangster, B., Supan, M.: A visual study of binary fragment types Black Hat USA (2010)

Conti, G., Bratus, S., Sangster, B., Ragsdale, S., Supan, M., Lichtenberg, A., Perez, R., Shubina, A.: Automated mapping of large binary objects using primitive fragment type classification digital forensics research conference (DFRWS) (2010)

Yoo, I.: Visualizing windows executable viruses using self-organizing maps. In: 2004 International Workshop on Visualization for Cyber Security (VizSec)

Quist, D.A., Liebrock, L.M.: Visualizing compiled executables for malware analysis. In: International Workshop on Visualization for Cyber Security (VizSec), pp. 27–32 (2009)

Kancherla, K., Mukkamala, S.: Image visualization based malware detection. In: CICS, pp. 40–44 (2013)

Akansu, A.N., Serdijn, W.A., Selesnick, I.W.: Wavelet transforms in signal processing: a review of emerging applications. Phys. Commun. 3(1), 1–18 (2010)

Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on gabor filters. IEEE Trans. Image Process. 1(10), 1160–1167 (2002)

Offensive Computing Open Malware Accessed on May 2013 http://www.offensivecomputing.net/

Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. Comparison of classifier methods: a case study in handwritten digit recognition. In: Proceedings of the 12th International Conference on Pattern Recognition and Neural Networks, Jerusalem, pp. 77–87 (1992)

Lee, J.H., Lin, C.J.: Automatic model selection for support vector machines, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University (2000)

Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. National Taiwan University, Taipei, Department of Computer Science and Information Engineering (2001)

Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press, New York (1975)

KRebel, U.: Pairwise classification and support vector machines. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge (1998)

Friedman, J.H.: Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University (1996)

Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems 12 (NIPS-99), pp. 547–553. MIT Press, Cambridge (2000)

Breiman, L.: Random forests. J. Mach. Learn. 45, 5–32 (2001)

Salford Systems, TreeNet, CART, Random Forests Manual

Crammer, K., Singer, Y.: On the Learnability and Design of Output Codes for Multiclass Problems. In: Computational learning theory, pp. 35–46 (2000)