PaL diagrams: A linear diagram-based visual language
Tài liệu tham khảo
Bellucci, 2014, vol. 1132
Burris, 1998
P. Chapman, G. Stapleton, P. Rodgers, L. Micallef, A. Blake, Visualizing sets: an empirical comparison of diagram types, in: Diagrammatic Representation and Inference, Lecture Notes in Computer Science 8578, Springer, 2012, pp. 146–160.
L. Couturat, Opuscules et fragments inédits de Leibniz, Felix Alcan, 1903.
Ebbinghaus, 1991
Englebretsen, 1991, Linear diagrams for syllogisms (with relationals), Notre-Dame J. Form. Log., 33, 37, 10.1305/ndjfl/1093636009
J. Gil, J. Howse, S. Kent, Constraint diagrams: a step beyond UML, in: Proceedings of TOOLS USA 1999, Santa Barbara, California, USA, IEEE Computer Science Press, August 1999, pp. 453–463.
H. Hofmann, A. Siebes, A. Wilhelm, Visualizing association rules with interactive mosaic plots, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2000, pp. 227–235.
Lemon, 1998, On the insufficiency of linear diagrams for syllogisms, Notre-Dame J. Form. Log., 39, 573, 10.1305/ndjfl/1039118871
Rodgers, 2014, A survey of Euler diagrams, J. Vis. Lang. Comput., 25, 134, 10.1016/j.jvlc.2013.08.006
Y. Sato, K. Mineshima, The efficacy of diagrams in syllogistic reasoning: a case of linear diagrams, in: Diagrammatic Representation and Inference, Lecture Notes in Computer Science, Springer, 2012, pp. 352–355.
Shin, 1994
Stapleton, 2008, Evaluating and generalizing constraint diagrams, J. Vis. Lang. Comput., 19, 499, 10.1016/j.jvlc.2008.04.003
G. Stapleton, J. Masthoff, Incorporating negation into visual logics: a case study using Euler diagrams, in: Visual Languages and Computing 2007, Knowledge Systems Institute, 2007, pp. 187–194.
G. Stapleton, P. Rodgers, J. Howse, J. Taylor, Properties of Euler diagrams, in: Proceedings of Layout of Software Engineering Diagrams, EASST, 2007, pp. 2–16.
Stapleton, 2004, The expressiveness of spider diagrams, J. Log. Comput., 14, 857, 10.1093/logcom/14.6.857
M. Urbas, M. Jamnik, Heterogeneous proofs: spider diagrams meet higher-order provers, in: Second International Conference on Interactive Theorem Proving, 2011, pp. 376–382.
K. Wittenburg, T. Lanning, M. Heinrichs, M. Stanton, Parallel bargrams for consumer-based information exploration and choice, in: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, ACM, 2001, pp. 51–60.