PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas

International Journal of Greenhouse Gas Control - Tập 81 - Trang 93-102 - 2019
Jonathan Ø. Torstensen1, Ragne M.L. Helberg1, Liyuan Deng1, Øyvind W. Gregersen1, Kristin Syverud1,2
1The Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
2RISE PFI, 7491 Trondheim, Norway

Tài liệu tham khảo

Abitbol, 2011, Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing, Soft Matter, 7, 2373, 10.1039/c0sm01172j Alloin, 2011, Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation, Cellulose, 18, 957, 10.1007/s10570-011-9543-x Ansaloni, 2017, Development of membrane contactors using volatile amine-based absorbents for CO2capture: amine permeation through the membrane, J. Memb. Sci., 537, 272, 10.1016/j.memsci.2017.05.016 Ansaloni, 2017, Nanocellulose-based membranes for CO2 capture, J. Membr. Sci., 522, 216, 10.1016/j.memsci.2016.09.024 Auad, 2008, Characterization of nanocellulose- reinforced shape memory polyurethanes, Polym. Int., 57, 651, 10.1002/pi.2394 Baker, 2014, Gas separation membrane materials: a perspective, Macromolecules, 47, 6999, 10.1021/ma501488s Balberg, 1983, Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks, Phys. Rev. B, 28, 3799, 10.1103/PhysRevB.28.3799 Brunetti, 2010, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115, 10.1016/j.memsci.2009.11.040 Chinga, 2007, Cross-sectional dimensions of fiber and pore networks based on Euclidean distance maps, Nord. Pulp Pap. Res. J., 22, 500, 10.3183/NPPRJ-2007-22-04-p500-507 Cuéllar-Franca, 2015, Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util., 9, 82, 10.1016/j.jcou.2014.12.001 Dagnon, 2012, Water-triggered Modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices, Macromolecules, 45, 4707, 10.1021/ma300463y Davis, 2010, Future CO2 emissions and climate change from existing energy infrastructure, Science, 80, 1330, 10.1126/science.1188566 Deng, 2009 Deng, 2010, Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane, J. Membr. Sci., 363, 295, 10.1016/j.memsci.2010.07.043 Deng, 2009, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, J. Memb. Sci., 340, 154, 10.1016/j.memsci.2009.05.019 Dufresne, 2012 Ehmann, 2014, Design of anticoagulant surfaces based on cellulose nanocrystals, Chem. Commun., 50, 13070, 10.1039/C4CC05254D Favier, 1997, Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers, Acta Mater., 45, 1557, 10.1016/S1359-6454(96)00264-9 Favre, 2007, Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption?, J. Membr. Sci., 294, 50, 10.1016/j.memsci.2007.02.007 Fujisawa, 2011, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydr. Polym., 84, 579, 10.1016/j.carbpol.2010.12.029 Gamelas, 2015, On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment, Micron, 72, 28, 10.1016/j.micron.2015.02.003 Ghanadpour, 2015, Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials, Biomacromolecules, 16, 3399, 10.1021/acs.biomac.5b01117 Ishii, 2011, Viscoelastic evaluation of average length of cellulose nanofibers prepared by tempo-mediated oxidation, Biomacromolecules, 12, 548, 10.1021/bm1013876 Isogai, 2011, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71, 10.1039/C0NR00583E Mulder, 1996 Jahan, 2018, Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure, J. Membr. Sci., 554, 275, 10.1016/j.memsci.2018.02.061 Jalal Uddin, 2011, Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers, Biomacromolecules, 12, 617, 10.1021/bm101280f Kim, 2004, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci. Part B: Polym. Phys., 42, 4326, 10.1002/polb.20282 Klug, 1974 Kumar, 2017, Coatability of cellulose nanofibril suspensions: role of rheology and water retention, Bioresources, 12, 7656, 10.15376/biores.12.4.7656-7679 Li, 2014, Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils, Carbohydr. Polym., 113, 403, 10.1016/j.carbpol.2014.07.031 Liang, 2009, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater., 19, 2297, 10.1002/adfm.200801776 Mahajan, 2002, Mixed matrix membrane materials: an answer to the challenges faced by membrane based gas separations today?, J. Chin. Inst. Chem. Eng., 33, 77 McElroy, 1951, 1 Mihranyan, 2004, Moisture sorption by cellulose powders of varying crystallinity, Int. J. Pharm., 269, 433, 10.1016/j.ijpharm.2003.09.030 Ottesen, 2017, Viability and properties of roll-to-roll coating of cellulose nanofibrils on recycled paperboard, Nord. Pulp Pap. Res. J., 32, 179, 10.3183/NPPRJ-2017-32-02-p179-188 Peppas, 1976, Differential scanning calorimetry of crystallized PVA hydrogels, J. Appl. Polym. Sci., 20, 1457, 10.1002/app.1976.070200604 Postek, 2013, 21 Rashad, 2017, Cytocompatibility of wood-derived cellulose nanofibril hydrogels with different surface chemistry, Biomacromolecules, 18, 1238, 10.1021/acs.biomac.6b01911 Rescignano, 2014, PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles, Carbohydr. Polym., 99, 47, 10.1016/j.carbpol.2013.08.061 Ricciardi, 2004, X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques, Macromolecules, 37, 1921, 10.1021/ma035663q Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030 Robeson, 1991, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165, 10.1016/0376-7388(91)80060-J Rodionova, 2013, TEMPO-mediated oxidation of Norway Spruce and Eucalyptus pulps: preparation and characterization of nanofibers and nanofiber dispersions, J. Polym. Environ., 21, 207, 10.1007/s10924-012-0483-9 Sacui, 2014, Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods, ACS Appl. Mater. Interfaces, 6, 6127, 10.1021/am500359f Saeed, 2016, Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture, Int. J. Greenh. Gas Control, 53, 254, 10.1016/j.ijggc.2016.08.017 Saeed, 2015, CO2 facilitated transport membrane promoted by mimic enzyme, J. Memb. Sci., 494, 196, 10.1016/j.memsci.2015.07.028 Saito, 2004, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, 5, 1983, 10.1021/bm0497769 Sandru, 2013, Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants, Energy Procedia, 37, 6473, 10.1016/j.egypro.2013.06.577 Science, 1970, The ultrastructure of cellulose from wood, Wood Sci. Technol., 4, 15, 10.1007/BF00356234 Segal, 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer, Text. Res. J., 29, 786, 10.1177/004051755902901003 Sharma, 2014, Investigation of nanolevel molecular packing and its role in thermo-mechanical properties of PVA–fMWCNT composites: positron annihilation and small angle X-ray scattering studies, Phys. Chem. Chem. Phys., 16, 1399, 10.1039/C3CP54054E Sharma, 2015, Effects of the molecular level dispersion of graphene oxide on the free volume characteristics of poly(vinyl alcohol) and its impact on the thermal and mechanical properties of their nanocomposites, Phys. Chem. Chem. Phys., 17, 29201, 10.1039/C5CP05278E Sharma, 2015, Structure at interphase of poly(vinyl alcohol)-SiC nanofiber composite and its impact on mechanical properties: positron annihilation and small-angle X-ray scattering studies, Macromolecules, 48, 5706, 10.1021/acs.macromol.5b01095 Stuart Haszeldine, 2009, Carbon capture and storage: how green can black be?, Science, 80, 1647, 10.1126/science.1172246 Sugiyama, 1991, Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall, Macromolecules, 19924, 4168, 10.1021/ma00014a033 Svagan, 2009, Reduced water vapour sorption in cellulose nanocomposites with starch matrix, Compos. Sci. Technol., 69, 500, 10.1016/j.compscitech.2008.11.016 Torstensen, 2018, Swelling and free-volume characteristics of TEMPO-Oxidized cellulose nanofibril films, Biomacromolecules, 19, 1016, 10.1021/acs.biomac.7b01814 van Wazer, 1958 Yu, 2013, Quantum chemistry calculation and experimental study of CO2/CH4and functional group interactions for the design of solubility selective membrane materials, J. Membr. Sci., 441, 137, 10.1016/j.memsci.2013.03.052 Zhou, 2012, Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films, Express Polym. Lett., 6, 794, 10.3144/expresspolymlett.2012.85 Zornoza, 2011, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation, J. Membr. Sci., 368, 100, 10.1016/j.memsci.2010.11.027