PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acosta-Rua A J, Cannon R L, Yezierski R P, Vierck C J (2011). Sex differences in effects of excitotoxic spinal injury on below-level pain sensitivity. Brain Res, 1419: 85–96
Alessandrini A, Namura S, Moskowitz M A, Bonventre J V (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA, 96(22): 12866–12869
Alessi D R, James S R, Downes C P, Holmes A B, Gaffney P R, Reese C B, Cohen P (1997). Characterization of a 3-phosphoinositidedependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol, 7(4): 261–269
Alter B J, Zhao C, Karim F, Landreth G E, Gereau R W 4th (2010). Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models. J Neurosci, 30(34): 11537–11547
Arcaro A, Wymann M P (1993). Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J, 296(Pt 2): 297–301
Brewer K L, Hardin J S (2004). Neuroprotective effects of nicotinamide after experimental spinal cord injury. Acad Emerg Med, 11(2): 125–130
Brewer K L, Yezierski R P (1998). Effects of adrenal medullary transplants on pain-related behaviors following excitotoxic spinal cord injury. Brain Res, 798(1–2): 83–92
Cadelli D S, Schwab ME (1991). Myelin-associated inhibitors of neurite outgrowth and their role in CNS regeneration. Ann N Y Acad Sci, 633(1 Glial-Neurona): 234–240
Cai Q Y, Chen X S, Zhong S C, Luo X, Yao Z X (2009). Differential expression of PTEN in normal adult rat brain and upregulation of PTEN and p-Akt in the ischemic cerebral cortex. Anat Rec (Hoboken), 292(4): 498–512
Chauhan A, Sharma U, Jagannathan N R, Reeta K H, Gupta Y K (2011). Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res, 225(2): 603–609
Chen J, Xie C, Tian L, Hong L, Wu X, Han J (2010). Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc Natl Acad Sci USA, 107(48): 20774–20779
Chen L, Xu D, Gao Y, Cui X, Du Z, Ding Q, Wang X (2012). Effect of donor JNK signal transduction inhibition on transplant outcome in brain dead rat model. Inflammation, 35(1): 122–129
Chen X L, Li X Y, Qian S B, Wang Y C, Zhang P Z, Zhou X J, Wang Y X (2012). Down-regulation of spinal D-amino acid oxidase expression blocks formalin-induced tonic pain. Biochem Biophys Res Commun, 421(3): 501–507
Dow K E, Guo M, Kisilevsky R, Riopelle R J (1993). Regenerative neurite growth modulation associated with astrocyte proteoglycans. Brain Res Bull, 30(3–4): 461–467
Dudley D T, Pang L, Decker S J, Bridges A J, Saltiel A R (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA, 92(17): 7686–7689
Endo H, Nito C, Kamada H, Nishi T, Chan P H (2006). Activation of the Akt/GSK3β signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab, 26(12): 1479–1489
Engelman J A, Luo J, Cantley L C (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 7(8): 606–619
Favata M F, Horiuchi K Y, Manos E J, Daulerio A J, Stradley D A, Feeser WS, Van Dyk D E, Pitts WJ, Earl R A, Hobbs F, Copeland R A, Magolda R L, Scherle P A, Trzaskos J M (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem, 273(29): 18623–18632
Ferrer I, Friguls B, Dalfó E, Planas A M (2003). Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol, 105(5): 425–437
Gao Y J, Ji R R (2010). Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther, 126(1): 56–68
Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer H R (1997). Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat Struct Biol, 4(9): 694–699
Ghasemlou N, Lopez-Vales R, Lachance C, Thuraisingam T, Gaestel M, Radzioch D, David S (2010). Mitogen-activated protein kinaseactivated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci, 30(41): 13750–13759
GrandPré T, Nakamura F, Vartanian T, Strittmatter S M (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 403(6768): 439–444
Grishchuk Y, Ginet V, Truttmann A C, Clarke P G, Puyal J (2011). Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy, 7(10): 1115–1131
Howitt J, Lackovic J, Low L H, Naguib A, Macintyre A, Goh C P, Callaway J K, Hammond V, Thomas T, Dixon M, Putz U, Silke J, Bartlett P, Yang B, Kumar S, Trotman L C, Tan S S (2012). Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol, 196(1): 29–36
Inoki K, Li Y, Zhu T, Wu J, Guan K L (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 4(9): 648–657
Irving E A, Barone F C, Reith A D, Hadingham S J, Parsons A A (2000). Differential activation of MAPK/ERK and p38/SAPK in neurons and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res, 77(1): 65–75
Jaeschke A, Hartkamp J, Saitoh M, Roworth W, Nobukuni T, Hodges A, Sampson J, Thomas G, Lamb R (2002). Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol, 159(2): 217–224
Ji R R, Gereau R W 4th, Malcangio M, Strichartz G R (2009). MAP kinase and pain. Brain Res Brain Res Rev, 60(1): 135–148
Johnson G L, Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600): 1911–1912
Kau T R, Schroeder F, Ramaswamy S, Wojciechowski C L, Zhao J J, Roberts T M, Clardy J, Sellers W R, Silver P A (2003). A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell, 4(6): 463–476
Kesherwani V, Agrawal S K (2012). Upregulation of RyR2 in hypoxic/reperfusion injury. J Neurotrauma, 29(6): 1255–1265
Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008). P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci, 28(11): 2892–2902
Koelsch A, Feng Y, Fink D J, Mata M (2010). Transgene-mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion. J Neurochem, 113(1): 143–152
Krens S F, Spaink H P, Snaar-Jagalska B E (2006). Functions of the MAPK family in vertebrate-development. FEBS Lett, 580(21): 4984–4990
Kwon C H, Zhu X, Zhang J, Knoop L L, Tharp R, Smeyne R J, Eberhart C G, Burger P C, Baker S J (2001). Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet, 29(4): 404–411
Lee J O, Yang H, Georgescu M M, Di Cristofano A, Maehama T, Shi Y, Dixon J E, Pandolfi P, Pavletich N P (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99(3): 323–334
Lee J Y, Chung H, Yoo Y S, Oh Y J, Oh T H, Park S, Yune T Y (2010). Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology, 151(8): 3815–3826
Levine B, Yuan J (2005). Autophagy in cell death: an innocent convict? J Clin Invest, 115(10): 2679–2688
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner S H, Giovanella B C, Ittmann M, Tycko B, Hibshoosh H, Wigler M H, Parsons R (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275(5308): 1943–1947
Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J (2010a). Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem, 112(6): 1500–1512
Liu G, Detloff M R, Miller K N, Santi L, Houlé J D (2012b). Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol, 233(1): 447–456
Liu K, Lu Y, Lee J K, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park K K, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010b). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci, 13(9): 1075–1081
Liu N K, Zhang Y P, Titsworth W L, Jiang X, Han S, Lu P H, Shields C B, Xu X M (2006). A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol, 59(4): 606–619
Liu Y, Wang H, Zhu Y, Chen L, Qu Y, Zhu Y (2012a). The protective effect of nordihydroguaiaretic acid on cerebral ischemia/reperfusion injury is mediated by the JNK pathway. Brain Res, 1445: 73–81
Loane D J, Faden A I (2010). Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci, 31(12): 596–604
McKerracher L, David S, Jackson D L, Kottis V, Dunn R J, Braun P E (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13(4): 805–811
Mearow K M, Dodge M E, Rahimtula M, Yegappan C (2002). Stressmediated signaling in PC12 cells-the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem, 83(2): 452–462
Mielke K, Herdegen T (2000). JNK and p38 stresskinases—degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol, 61(1): 45–60
Nakashima S, Arnold S A, Mahoney E T, Sithu S D, Zhang Y P, D’Souza S E, Shields C B, Hagg T (2008). Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats. J Neurosci, 28(29): 7293–7303
National Spinal Cord Injury Statistical Center (NSCISC), University of Alabama at Birmingham (2011). Facts and figures at a glance. www.nscisc.uab.edu .
Noshita N, Lewén A, Sugawara T, Chan P H (2001). Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 21(12): 1442–1450
Ohsawa M, Mutoh J, Yamamoto S, Ono H, Hisa H (2012). Effect of spinally administered simvastatin on the formalin-induced nociceptive response in mice. J Pharmacol Sci, 119(1): 102–106
Park K K, Liu K, Hu Y, Smith P D, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science, 322(5903): 963–966
Pearson L L, Castle B E, Kehry M R (2001). CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptorassociated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int Immunol, 13(3): 273–283
Pouysségur J, Volmat V, Lenormand P (2002). Fidelity and spatiotemporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol, 64(5–6): 755–763
Proud C G (2002). Regulation of mammalian translation factors by nutrients. Eur J Biochem, 269(22): 5338–5349
Proud C G (2004). The multifaceted role of mTOR in cellular stress responses. DNA Repair (Amst), 3(8-9): 927–934
Roux P P, Blenis J (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 68(2): 320–344
Rubinfeld H, Seger R (2005). The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol, 31(2): 151–174
Saklatvala J (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol, 4(4): 372–377
Samuels I S, Saitta S C, Landreth G E (2009). MAP’ing CNS development and cognition: an ERKsome process. Neuron, 61(2): 160–167
Sawe N, Steinberg G, Zhao H (2008). Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res, 86(8): 1659–1669
Schmid A C, Byrne R D, Vilar R, Woscholski R (2004). Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett, 566(1–3): 35–38
Schwab M E, Bartholdi D (1996). Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev, 76(2): 319–370
Segal R A, Greenberg M E (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci, 19(1): 463–489
Seglen P O, Gordon P B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892
Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E (2012). Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma, 29(5): 946–956
Shang J, Deguchi K, Yamashita T, Ohta Y, Zhang H, Morimoto N, Liu N, Zhang X, Tian F, Matsuura T, Funakoshi H, Nakamura T, Abe K (2010). Antiapoptotic and antiautophagic effects of glial cell linederived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res, 88(10): 2197–2206
Shi G D, OuYang Y P, Shi J G, Liu Y, Yuan W, Jia L S (2011). PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun, 404(4): 941–945
Shi T J, Huang P, Mulder J, Ceccatelli S, Hokfelt T (2009). Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury. Neurosignals, 17(3): 203–212
Sun F, Park K K, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner B A, He Z (2011). Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature, 480: 372–375
Sury MD, Vorlet-Fawer L, Agarinis C, Yousefi S, Grandgirard D, Leib S L, Christen S (2011). Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis. Neurobiol Dis, 41(1): 201–208
Tee A R, Fingar D C, Manning B D, Kwiatkowski D J, Cantley L C, Blenis J (2002). Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA, 99(21): 13571–13576
Titsworth W L, Onifer S M, Liu N K, Xu X M (2007). Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination. Exp Neurol, 207(1): 150–162
Tran H T, Sanchez L, Brody D L (2012). Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol, 71(2): 116–129
Treisman R (1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol, 8(2): 205–215
Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 269(7): 5241–5248
Walker C L, Liu N K, Xu X M (2012a). Bisperoxovanadium differentially affects cellular Akt and Erk activity and promotes oligodendrocyte and myelin sparing after hemi-contusive cervical spinal cord injury. J Neurotrauma, 29(10): A–30
Walker C L, Walker M J, Liu N K, Risberg E C, Gao X, Chen J, Xu X M (2012b). Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS ONE, 7(1): e30012
Wang G, Barrett JW, Stanford M, Werden S J, Johnston J B, Gao X, Sun M, Cheng J Q, McFadden G (2006). Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci U S A, 103: 4640–4645
Wang H Y, Crupi D, Liu J, Stucky A, Cruciata G, Di Rocco A, Friedman E, Quartarone A, Ghilardi M F (2011). Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci, 31(30): 11044–11054
Wang K C, Koprivica V, Kim J A, Sivasankaran R, Guo Y, Neve R L, He Z (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417(6892): 941–944
White A, Pargellis C A, Studts J M, Werneburg B G, Farmer B T 2nd (2007). Molecular basis of MAPK-activated protein kinase 2:p38 assembly. Proc Natl Acad Sci USA, 104(15): 6353–6358
Wiley R G, Lemons L L, Kline R H 4th (2009). Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex responses to heat and formalin. Neuroscience, 161(1): 139–147
Xu L, Chen S, Bergan R C (2006). MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene, 25(21): 2987–2998
Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011). Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res, 1402: 109–121
Yang P, Dankowski A, Hagg T (2007). Protein tyrosine phosphatase inhibition reduces degeneration of dopaminergic substantia nigra neurons and projections in 6-OHDA treated adult rats. Eur J Neurosci, 25(5): 1332–1340
Yezierski R P, Liu S, Ruenes G L, Kajander K J, Brewer K L (1998). Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain, 75(1): 141–155
Yoshimura K, Ueno M, Lee S, Nakamura Y, Sato A, Yoshimura K, Kishima H, Yoshimine T, Yamashita T (2011). c-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice. Neurosci Res, 71(3): 266–277
Yu C G, Yezierski R P (2005). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res, 138(2): 244–255
Yu C G, Yezierski R P, Joshi A, Raza K, Li Y, Geddes J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem, 113(1): 131–142
Yu F, Narasimhan P, Saito A, Liu J, Chan P H (2008). Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab, 28(1): 44–52
Yu F, Sugawara T, Maier C M, Hsieh L B, Chan P H (2005). Akt/Bad signaling and motor neuron survival after spinal cord injury. Neurobiol Dis, 20(2): 491–499
Yune T Y, Park H G, Lee J Y, Oh T H (2008). Estrogen-induced Bcl-2 expression after spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependent CREB activation. J Neurotrauma, 25(9): 1121–1131
Zhang L, Ma Z, Smith G M, Wen X, Pressman Y, Wood P M, Xu X M (2009). GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia, 57(11): 1178–1191
Zhang Q G, Wu D N, Han D, Zhang G Y (2007). Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett, 581(3): 495–505
Zhang S, Xia Y Y, Lim H C, Tang F R, Feng Z W (2010). NCAMmediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis. Neurochem Int, 56(8): 919–929
Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y, Poon W, Fei Z (2012). Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol, 237(2): 489–498
Zhao Z, Liu N, Huang J, Lu P H, Xu X M (2011). Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress-induced cell death. J Neurochem, 116(6): 1057–1065
Zheng C, Lin Z, Zhao Z J, Yang Y, Niu H, Shen X (2006). MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem, 281(48): 37215–37226
Zhong H, Bowen J P (2011). Recent advances in small molecule inhibitors of VEGFR and EGFR signaling pathways. Curr Top Med Chem, 11(12): 1571–1590