PROTACs: An Emerging Therapeutic Modality in Precision Medicine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albert, 2019, Photoswitchable peptides for spatiotemporal control of biological functions, Chem. Commun. (Camb.), 55, 10192, 10.1039/C9CC03346G
An, 2018, Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs, EBioMedicine, 36, 553, 10.1016/j.ebiom.2018.09.005
An, 2019, Developing potent PROTACs tools for selective degradation of HDAC6 protein, Protein Cell, 10, 606, 10.1007/s13238-018-0602-z
Ankenbruck, 2018, Optochemical control of biological processes in cells and animals, Angew. Chem. Int. Ed., 57, 2768, 10.1002/anie.201700171
Asatsuma-Okumura, 2019, p63 is a cereblon substrate involved in thalidomide teratogenicity, Nat. Chem. Biol., 15, 1077, 10.1038/s41589-019-0366-7
Audia, 2016, Histone modifications and cancer, Cold Spring Harb. Perspect. Biol., 8, a019521, 10.1101/cshperspect.a019521
Bai, 2019, A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo, Cancer Cell, 36, 498, 10.1016/j.ccell.2019.10.002
Bassi, 2018, Modulating PCAF/GCN5 immune cell function through a PROTAC approach, ACS Chem. Biol., 13, 2862, 10.1021/acschembio.8b00705
BasuRay, 2019, Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis, Proc. Natl. Acad. Sci. U S A, 116, 9521, 10.1073/pnas.1901974116
Bensimon, 2020, Targeted degradation of SLC transporters reveals amenability of multi-pass transmembrane proteins to ligand-induced proteolysis, Cell Chem. Biol., 27, 728, 10.1016/j.chembiol.2020.04.003
Bieliauskas, 2008, Isoform-selective histone deacetylase inhibitors, Chem. Soc. Rev., 37, 1402, 10.1039/b703830p
Bond, 2020, Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs, ACS Cent. Sci, 10.1021/acscentsci.0c00411
Bondeson, 2017, Targeted protein degradation by small molecules, Annu. Rev. Pharmacol. Toxicol., 57, 107, 10.1146/annurev-pharmtox-010715-103507
Bondeson, 2015, Catalytic in vivo protein knockdown by small-molecule PROTACs, Nat. Chem. Biol., 11, 611, 10.1038/nchembio.1858
Bondeson, 2018, Lessons in PROTAC design from selective degradation with a promiscuous warhead, Cell Chem. Biol., 25, 78, 10.1016/j.chembiol.2017.09.010
Brand, 2019, Homolog-selective degradation as a strategy to probe the function of CDK6 in AML, Cell Chem. Biol., 26, 300, 10.1016/j.chembiol.2018.11.006
Buckley, 2012, Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha, Angew. Chem. Int. Ed., 51, 11463, 10.1002/anie.201206231
Buckley, 2015, HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins, ACS Chem. Biol., 10, 1831, 10.1021/acschembio.5b00442
Buckley, 2012, Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction, J. Am. Chem. Soc., 134, 4465, 10.1021/ja209924v
Buhimschi, 2018, Targeting the C481S ibrutinib-resistance mutation in Bruton's tyrosine kinase using PROTAC-mediated degradation, Biochemistry, 57, 3564, 10.1021/acs.biochem.8b00391
Burslem, 2017, Small-molecule modulation of protein homeostasis, Chem. Rev., 117, 11269, 10.1021/acs.chemrev.7b00077
Burslem, 2020, Proteolysis-targeting chimeras as therapeutics and tools for biological discovery, Cell, 181, 102, 10.1016/j.cell.2019.11.031
Burslem, 2019, Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation, Cancer Res., 79, 4744, 10.1158/0008-5472.CAN-19-1236
Burslem, 2018, The advantages of targeted protein degradation over inhibition: an RTK case study, Cell Chem. Biol., 25, 67, 10.1016/j.chembiol.2017.09.009
Burslem, 2018, Enhancing antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion, J. Am. Chem. Soc., 140, 16428, 10.1021/jacs.8b10320
Bussiere, 2020, Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex, Nat. Chem. Biol., 16, 15, 10.1038/s41589-019-0411-6
Cance, 2013, Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics, Sci. Signal., 6, pe10, 10.1126/scisignal.2004021
Cartron, 2020, Epigenetic protein complexes: the adequate candidates for the use of a new generation of epidrugs in personalized and precision medicine in cancer, Epigenomics, 12, 171, 10.2217/epi-2019-0169
Chamberlain, 2019, Development of targeted protein degradation therapeutics, Nat. Chem. Biol., 15, 937, 10.1038/s41589-019-0362-y
Churcher, 2018, Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones?, J. Med. Chem., 61, 444, 10.1021/acs.jmedchem.7b01272
Coomar, 2019, Exploring DCAF15 for reprogrammable targeted protein degradation, bioRxiv, 542506
Crew, 2018, Identification and characterization of von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1, J. Med. Chem., 61, 583, 10.1021/acs.jmedchem.7b00635
Crews, 2010, Targeting the undruggable proteome: the small molecules of my dreams, Chem. Biol., 17, 551, 10.1016/j.chembiol.2010.05.011
Cromm, 2018, Addressing kinase-independent functions of Fak via PROTAC-mediated degradation, J. Am. Chem. Soc., 140, 17019, 10.1021/jacs.8b08008
Cunningham, 1997, Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor, J. Biol. Chem., 272, 10957, 10.1074/jbc.272.16.10957
Demizu, 2012, Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy, Bioorg. Med. Chem. Lett., 22, 1793, 10.1016/j.bmcl.2011.11.086
Demizu, 2016, Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand, Bioorg. Med. Chem. Lett., 26, 4865, 10.1016/j.bmcl.2016.09.041
Ding, 2013, Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development, J. Med. Chem., 56, 5979, 10.1021/jm400487c
Dong, 2019, An allosteric PRC2 inhibitor targeting EED suppresses tumor progression by modulating the immune response, Cancer Res., 79, 5587, 10.1158/0008-5472.CAN-19-0428
Donovan, 2018, Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome, eLife, 7, e38430, 10.7554/eLife.38430
Du, 2019, Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820, Structure, 27, 1625, 10.1016/j.str.2019.10.005
Edgar, 2010, Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors, Cancer Res., 70, 1164, 10.1158/0008-5472.CAN-09-2525
Farnaby, 2019, BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design, Nat. Chem. Biol., 15, 672, 10.1038/s41589-019-0294-6
Faust, 2020, Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15, Nat. Chem. Biol., 16, 7, 10.1038/s41589-019-0378-3
Finley, 2009, Recognition and processing of ubiquitin-protein conjugates by the proteasome, Annu. Rev. Biochem., 78, 477, 10.1146/annurev.biochem.78.081507.101607
Fischer, 2014, Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide, Nature, 512, 49, 10.1038/nature13527
Fry, 2004, Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts, Mol. Cancer Ther., 3, 1427, 10.1158/1535-7163.1427.3.11
Gabizon, 2020, Efficient targeted degradation via reversible and irreversible covalent PROTACs, J. Am. Chem. Soc., 142, 11734, 10.1021/jacs.9b13907
Gadd, 2017, Structural basis of PROTAC cooperative recognition for selective protein degradation, Nat. Chem. Biol., 13, 514, 10.1038/nchembio.2329
Gao, 2020, PROTAC technology: opportunities and challenges, ACS Med. Chem. Lett., 11, 237, 10.1021/acsmedchemlett.9b00597
Gechijian, 2018, Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands, Nat. Chem. Biol., 14, 405, 10.1038/s41589-018-0010-y
Gehringer, 2019, Emerging and Re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology, J. Med. Chem., 62, 5673, 10.1021/acs.jmedchem.8b01153
Goodnow, 2017, DNA-encoded chemistry: enabling the deeper sampling of chemical space, Nat. Rev. Drug Discov., 16, 131, 10.1038/nrd.2016.213
Han, 2013, ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.), Cell Death Differ., 20, 1055, 10.1038/cdd.2013.33
Han, 2017, Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15, Science, 356, eaal3755, 10.1126/science.aal3755
Han, 2019, Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer, J. Med. Chem., 62, 941, 10.1021/acs.jmedchem.8b01631
Han, 2019, Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands, J. Med. Chem., 62, 11218, 10.1021/acs.jmedchem.9b01393
He, 2020, Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity, Nat. Commun., 11, 1996, 10.1038/s41467-020-15838-0
Helin, 2013, Chromatin proteins and modifications as drug targets, Nature, 502, 480, 10.1038/nature12751
Hines, 2013, Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs, Proc. Natl. Acad. Sci. U S A, 110, 8942, 10.1073/pnas.1217206110
Hines, 2019, MDM2-Recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53, Cancer Res., 79, 251, 10.1158/0008-5472.CAN-18-2918
Hipp, 2019, The proteostasis network and its decline in ageing, Nat. Rev. Mol. Cell Biol., 20, 421, 10.1038/s41580-019-0101-y
Hon, 2002, Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL, Nature, 417, 975, 10.1038/nature00767
Hsu, 2020, EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex, Cell Chem. Biol., 27, 41, 10.1016/j.chembiol.2019.11.004
Hu, 2019, Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER), J. Med. Chem., 62, 1420, 10.1021/acs.jmedchem.8b01572
Huang, 2018, A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader, Cell Chem. Biol., 25, 88, 10.1016/j.chembiol.2017.10.005
Humphreys, 2017, Discovery of a potent, cell penetrant, and selective p300/CBP-associated factor (PCAF)/General control nonderepressible 5 (GCN5) bromodomain chemical probe, J. Med. Chem., 60, 695, 10.1021/acs.jmedchem.6b01566
Ishoey, 2018, Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders, ACS Chem. Biol., 13, 553, 10.1021/acschembio.7b00969
Ito, 2010, Identification of a primary target of thalidomide teratogenicity, Science, 327, 1345, 10.1126/science.1177319
Itoh, 2010, Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins, J. Am. Chem. Soc., 132, 5820, 10.1021/ja100691p
Itoh, 2011, Design, synthesis and biological evaluation of nuclear receptor-degradation inducers, Bioorg. Med. Chem., 19, 6768, 10.1016/j.bmc.2011.09.041
Jacquemard, 2019, A bright future for fragment-based drug discovery: what does it hold?, Expert Opin. Drug Discov., 14, 413, 10.1080/17460441.2019.1583643
Jain, 2010, p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription, J. Biol. Chem., 285, 22576, 10.1074/jbc.M110.118976
Jiang, 2019, Development of dual and selective degraders of cyclin-dependent kinases 4 and 6, Angew. Chem. Int. Ed., 58, 6321, 10.1002/anie.201901336
Jin, 2020, Azo-PROTAC: novel light-controlled small-molecule tool for protein knockdown, J. Med. Chem., 63, 4644, 10.1021/acs.jmedchem.9b02058
Khan, 2019, A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity, Nat. Med., 25, 1938, 10.1038/s41591-019-0668-z
Kim, 2013, Molecular chaperone functions in protein folding and proteostasis, Annu. Rev. Biochem., 82, 323, 10.1146/annurev-biochem-060208-092442
Kliza, 2020, Resolving the complexity of ubiquitin networks, Front Mol. Biosci., 7, 21, 10.3389/fmolb.2020.00021
Kobayashi, 2004, Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2, Mol. Cell. Biol., 24, 7130, 10.1128/MCB.24.16.7130-7139.2004
Konstantinidou, 2019, PROTACs- a game-changing technology, Expert Opin. Drug Discov., 14, 1255, 10.1080/17460441.2019.1659242
Kostic, 2020, Critical assessment of targeted protein degradation as a research tool and pharmacological modality, Trends Pharmacol. Sci., 41, 305, 10.1016/j.tips.2020.02.006
Kouhara, 1997, A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway, Cell, 89, 693, 10.1016/S0092-8674(00)80252-4
Kounde, 2020, A caged E3 ligase ligand for PROTAC-mediated protein degradation with light, Chem. Commun. (Camb.), 56, 5532, 10.1039/D0CC00523A
Kronke, 2015, Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS, Nature, 523, 183, 10.1038/nature14610
Kronke, 2014, Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science, 343, 301, 10.1126/science.1244851
Kumar Deshmukh, 2019, The contribution of the 20S proteasome to proteostasis, Biomolecules, 9, 190, 10.3390/biom9050190
Kurihara, 2020, Cereblon-mediated degradation of the amyloid precursor protein via the ubiquitin-proteasome pathway, Biochem. Biophys. Res. Commun., 524, 236, 10.1016/j.bbrc.2020.01.078
Kwon, 2019, AMPK is down-regulated by the CRL4A-CRBN axis through the polyubiquitination of AMPKα isoforms, FASEB J., 33, 6539, 10.1096/fj.201801766RRR
Lai, 2017, Induced protein degradation: an emerging drug discovery paradigm, Nat. Rev. Drug Discov., 16, 101, 10.1038/nrd.2016.211
Lai, 2016, Modular PROTAC design for the degradation of oncogenic BCR-ABL, Angew. Chem. Int. Ed., 55, 807, 10.1002/anie.201507634
Laugesen, 2016, Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer, Cold Spring Harb. Perspect. Med., 6, a026575, 10.1101/cshperspect.a026575
Lee, 2015, FAK signaling in human cancer as a target for therapeutics, Pharmacol. Ther., 146, 132, 10.1016/j.pharmthera.2014.10.001
Lee, 2007, DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase, Mol. Cell, 26, 775, 10.1016/j.molcel.2007.06.001
Lemmon, 2010, Cell signaling by receptor tyrosine kinases, Cell, 141, 1117, 10.1016/j.cell.2010.06.011
Li, 2001, Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival, Mol. Cell Neurosci., 17, 761, 10.1006/mcne.2000.0967
Li, 2019, Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression, J. Med. Chem., 62, 448, 10.1021/acs.jmedchem.8b00909
Li, 2020, First small-molecule PROTACs for G protein-coupled receptors: inducing α1A-adrenergic receptor degradation, Acta Pharm. Sin. B
Li, 2020, Development and characterization of a Wee1 kinase degrader, Cell Chem. Biol., 27, 57, 10.1016/j.chembiol.2019.10.013
Liby, 2012, Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease, Pharmacol. Rev., 64, 972, 10.1124/pr.111.004846
Liu, 2020, Light-induced control of protein destruction by opto-PROTAC, Sci. Adv., 6, eaay5154, 10.1126/sciadv.aay5154
Lu, 2015, Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4, Chem. Biol., 22, 755, 10.1016/j.chembiol.2015.05.009
Lu, 2018, Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway, Eur. J. Med. Chem., 146, 251, 10.1016/j.ejmech.2018.01.063
Maneiro, 2020, Antibody-PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4, ACS Chem. Biol., 15, 1306, 10.1021/acschembio.0c00285
Mares, 2020, Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2, Commun. Biol., 3, 140, 10.1038/s42003-020-0868-6
Matyskiela, 2016, A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase, Nature, 535, 252, 10.1038/nature18611
Moon, 2018, Chemically induced cellular proteolysis: an emerging therapeutic strategy for undruggable targets, Mol. Cells, 41, 933
Mullard, 2019, First targeted protein degrader hits the clinic, Nat. Rev. Drug Discov., 18, 237
Murtuza, 2019, Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer, Cancer Res., 79, 689, 10.1158/0008-5472.CAN-18-1281
Nagy, 2007, Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation, Oncogene, 26, 5341, 10.1038/sj.onc.1210604
Naito, 2019, SNIPERs—hijacking IAP activity to induce protein degradation, Drug Discov. Today Tech., 31, 35, 10.1016/j.ddtec.2018.12.002
Naro, 2020, Optical control of small molecule-induced protein degradation, J. Am. Chem. Soc., 142, 2193, 10.1021/jacs.9b12718
Neklesa, 2017, Targeted protein degradation by PROTACs, Pharmacol. Ther., 174, 138, 10.1016/j.pharmthera.2017.02.027
Nguyen, 2020, Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy, Semin. Cancer Biol., 10.1016/j.semcancer.2020.03.007
Nguyen, 2016, Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon, Mol. Cell, 61, 809, 10.1016/j.molcel.2016.02.032
Ohoka, 2014, Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin–proteasome pathway, Cell Death Dis., 5, e1513, 10.1038/cddis.2014.471
Ohoka, 2017, In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), J. Biol. Chem., 292, 4556, 10.1074/jbc.M116.768853
Ottis, 2017, Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy, ACS Chem. Biol., 12, 892, 10.1021/acschembio.6b01068
Ottis, 2019, Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway, ACS Chem. Biol., 14, 2215
Ottis, 2017, Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation, ACS Chem. Biol., 12, 2570, 10.1021/acschembio.7b00485
Pfaff, 2019, Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs, ACS Cent. Sci., 5, 1682, 10.1021/acscentsci.9b00713
Popow, 2019, Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions, J. Med. Chem., 62, 2508, 10.1021/acs.jmedchem.8b01826
Potjewyd, 2020, Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader, Cell Chem. Biol., 27, 47, 10.1016/j.chembiol.2019.11.006
Powell, 2018, Chemically induced degradation of anaplastic lymphoma kinase (ALK), J. Med. Chem., 61, 4249, 10.1021/acs.jmedchem.7b01655
Qi, 2017, An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED, Nat. Chem. Biol., 13, 381, 10.1038/nchembio.2304
Raina, 2017, Targeted protein knockdown using small molecule degraders, Curr. Opin. Chem. Biol., 39, 46, 10.1016/j.cbpa.2017.05.016
Raina, 2016, PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer, Proc. Natl. Acad. Sci. U S A, 113, 7124, 10.1073/pnas.1521738113
Rana, 2019, Selective degradation of CDK6 by a palbociclib based PROTAC, Bioorg. Med. Chem. Lett., 29, 1375, 10.1016/j.bmcl.2019.03.035
Renicke, 2013, A LOV2 domain-based optogenetic tool to control protein degradation and cellular function, Chem. Biol., 20, 619, 10.1016/j.chembiol.2013.03.005
Reynders, 2020, PHOTACs enable optical control of protein degradation, Sci. Adv., 6, eaay5064, 10.1126/sciadv.aay5064
Roy, 2019, SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate, ACS Chem. Biol., 14, 361, 10.1021/acschembio.9b00092
Sakamoto, 2001, Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation, Proc. Natl. Acad. Sci. U S A, 98, 8554, 10.1073/pnas.141230798
Sakamoto, 2003, Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation, Mol. Cell. Proteomics, 2, 1350, 10.1074/mcp.T300009-MCP200
Salami, 2018, Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance, Commun. Biol., 1, 100, 10.1038/s42003-018-0105-8
Salami, 2017, Waste disposal–An attractive strategy for cancer therapy, Science, 355, 1163, 10.1126/science.aam7340
Schapira, 2019, Targeted protein degradation: expanding the toolbox, Nat. Rev. Drug Discov., 18, 949, 10.1038/s41573-019-0047-y
Schiedel, 2018, Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals), J. Med. Chem., 61, 482, 10.1021/acs.jmedchem.6b01872
Schneekloth, 2008, Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics, Bioorg. Med. Chem. Lett., 18, 5904, 10.1016/j.bmcl.2008.07.114
Schneekloth, 2004, Chemical genetic control of protein levels: selective in vivo targeted degradation, J. Am. Chem. Soc., 126, 3748, 10.1021/ja039025z
Sievers, 2018, Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN, Science, 362, eaat0572, 10.1126/science.aat0572
Silva, 2019, Light-triggered release of photocaged therapeutics - where are we now?, J. Controll. Release, 298, 154, 10.1016/j.jconrel.2019.02.006
Silva, 2019, Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models, eLife, 8, eaat0572, 10.7554/eLife.45457
Smalley, 2020, PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes, Chem. Commun. (Camb.), 56, 4476, 10.1039/D0CC01485K
Smith, 2019, Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase, Nat. Commun., 10, 131, 10.1038/s41467-018-08027-7
Sporn, 2011, New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress, J. Nat. Prod., 74, 537, 10.1021/np100826q
Spradlin, 2019, Harnessing the anti-cancer natural product nimbolide for targeted protein degradation, Nat. Chem. Biol., 15, 747, 10.1038/s41589-019-0304-8
St Pierre, 2017, Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities, Curr. Opin. Genet. Dev., 42, 56, 10.1016/j.gde.2017.02.004
Tatham, 2008, RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation, Nat. Cell Biol., 10, 538, 10.1038/ncb1716
Ting, 2019, Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15, Cell Rep., 29, 1499, 10.1016/j.celrep.2019.09.079
Tinworth, 2019, PROTAC-mediated degradation of Bruton's tyrosine kinase is inhibited by covalent binding, ACS Chem. Biol., 14, 342, 10.1021/acschembio.8b01094
Tong, 2020, Targeted protein degradation via a covalent reversible degrader based on bardoxolone, ChemRxiv
Tong, 2020, A nimbolide-based kinase degrader preferentially degrades oncogenic BCR-ABL, ACS Chem. Biol., 15, 1788, 10.1021/acschembio.0c00348
Tovar, 2006, Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy, Proc. Natl. Acad. Sci. U S A, 103, 1888, 10.1073/pnas.0507493103
Tovell, 2019, Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader, ACS Chem. Biol., 14, 2024, 10.1021/acschembio.9b00505
Uehara, 2017, Selective degradation of splicing factor CAPERalpha by anticancer sulfonamides, Nat. Chem. Biol., 13, 675, 10.1038/nchembio.2363
Verma, 2020, Harnessing the power of proteolysis for targeted protein inactivation, Mol. Cell, 77, 446, 10.1016/j.molcel.2020.01.010
Vogelmann, 2020, Proteolysis targeting chimeras (PROTACs) for epigenetics research, Curr. Opin. Chem. Biol., 57, 8, 10.1016/j.cbpa.2020.01.010
Wang, 2019, Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation, Nat. Chem. Biol., 15, 1223, 10.1038/s41589-019-0379-2
Wang, 2017, Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges, Cold Spring Harb. Perspect. Med., 7, a026245, 10.1101/cshperspect.a026245
Wang, 2019, Proteolysis targeting chimeras for the selective degradation of mcl-1/Bcl-2 derived from nonselective target binding ligands, J. Med. Chem., 62, 8152, 10.1021/acs.jmedchem.9b00919
Ward, 2019, Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications, ACS Chem. Biol., 14, 2430, 10.1021/acschembio.8b01083
Weerapana, 2010, Quantitative reactivity profiling predicts functional cysteines in proteomes, Nature, 468, 790, 10.1038/nature09472
Winter, 2015, DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation, Science, 348, 1376, 10.1126/science.aab1433
Wu, 2019, Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity, J. Med. Chem., 62, 7042, 10.1021/acs.jmedchem.9b00516
Xiong, 2017, Discovery of potent and selective inhibitors for G9a-like protein (GLP) lysine methyltransferase, J. Med. Chem., 60, 1876, 10.1021/acs.jmedchem.6b01645
Xue, 2020, Protein degradation through covalent inhibitor-based PROTACs, Chem. Commun. (Camb.), 56, 1521, 10.1039/C9CC08238G
Xue, 2019, Light-induced protein degradation with photocaged PROTACs, J. Am. Chem. Soc., 141, 18370, 10.1021/jacs.9b06422
Yang, 2016, Differential expression of p38 MAPK α, β, γ, δ isoforms in nucleus pulposus modulates macrophage polarization in intervertebral disc degeneration, Sci. Rep., 6, 22182, 10.1038/srep22182
Yang, 2018, Development of the first small molecule histone deacetylase 6 (HDAC6) degraders, Bioorg. Med. Chem. Lett., 28, 2493, 10.1016/j.bmcl.2018.05.057
Yang, 2020, A cell-based target engagement assay for the identification of cereblon E3 ubiquitin ligase ligands and their application in HDAC6 degraders, Cell Chem. Biol., 27, 866, 10.1016/j.chembiol.2020.04.008
Zengerle, 2015, Selective small molecule induced degradation of the BET bromodomain protein BRD4, ACS Chem. Biol., 10, 1770, 10.1021/acschembio.5b00216
Zhang, 2004, Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, Mol. Cell. Biol., 24, 10941, 10.1128/MCB.24.24.10941-10953.2004
Zhang, 2019, Acquired resistance to BET-PROTACs (proteolysis targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes, Mol. Cancer Ther., 18, 1302, 10.1158/1535-7163.MCT-18-1129
Zhang, 2019, Recent advances in selective and irreversible covalent ligand development and validation, Cell Chem. Biol., 26, 1486, 10.1016/j.chembiol.2019.09.012
Zhang, 2019, Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16, Nat. Chem. Biol., 15, 737, 10.1038/s41589-019-0279-5
Zhang, 2020, Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines, Eur. J. Med. Chem., 199, 112397, 10.1016/j.ejmech.2020.112397
Zhang, 2020, Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity, Eur. J. Med. Chem., 192, 112186, 10.1016/j.ejmech.2020.112186
Zhou, 2020, Development of selective mono or dual PROTAC degrader probe of CDK isoforms, Eur. J. Med. Chem., 187, 111952, 10.1016/j.ejmech.2019.111952