PPX1 gene overexpression has no influence on polyphosphates in Saccharomyces cerevisiae
Tóm tắt
The role of exopolyphosphatase PPX1 in polyphosphate metabolism in yeasts has been studied in strains of Saccharomyces cerevisiae with inactivated PPX1 and PPN1 genes transformed by the expression vector carrying the yeast PPX1 gene. Exopolyphosphatase activity in transformant strains increased 90- and 40-fold compared to the ΔPPX1 and ΔPPN1 strains, respectively. The purified recombinant exopolyphosphatase PPX1 was similar to the PPX1 of wild strains in its substrate specificity and requirement for divalent metal cations. It was more active with tripolyphosphate and low molecular mass polyphosphates than with high molecular mass polyphosphates and required Mg2+ for its activity. The high level of recombinant PPX1 expression caused no decrease in polyphosphate content in the cells of the transformant. This fact suggests the restricted role of PPX1 in polyphosphate metabolism in yeasts.
Tài liệu tham khảo
Kulaev, I. S., Vagabov, V. M., and Kulakovskaya, T. V. (2004) The Biochemistry of Inorganic Polyphosphates, Wiley.
Rao, N. N., Gomez-Garcia, M. R., and Kornberg, A. (2009) Inorganic polyphosphate: essential for growth and survival, Ann. Rev. Biochem., 78, 605–647.
Pavlov, E., Aschar-Sobbi, R., Campanella, M., Turner, R. J., Gomez-Garcia, M. R., and Abramov, A. Y. (2010) Inorganic polyphosphate and energy metabolism in mammalian cells, J. Biol. Chem., 285, 9420–9428.
Kulakovskaya, T. V. (2012) Inorganic polyphosphates: Jack of all trades, Biochemistry and Physiology: Open access, 1, 1000e107.
Omelon, S., Ariganello, M., Bonucci, E., Grynpas, M., and Nanci, A. (2013) A review of phosphate mineral nucleation in biology and geobiology, Calcif. Tissue Int., 93, 382–396.
Wurst, H., Shiba, T., and Kornberg, A. (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae, J. Bacteriol., 177, 898–906.
Sethuraman, A., Rao, N. N., and Kornberg, A. (2001) The endopolyphosphatase gene: essential in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 98, 8542–8547.
Lichko, L., Kulakovskaya, T., Pestov, N., and Kulaev, I. (2006) Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes, Biosci. Rep., 26, 45–54.
Lichko, L. P., Andreeva, N. A., Kulakovskaya, T. V., and Kulaev, I. S. (2003) Exopolyphosphatases of the yeast Saccharomyces cerevisiae, FEMS Yeast Res., 3, 233–238.
Tammenkoski, M., Koivula, K., Cusanelli, E., Zollo, M., Steegborn, C., Baykov, A. A., and Lahti, R. (2008) Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase, Biochemistry, 47, 9707–9713.
Eldarov, M. A., Baranov, M. V., Dumina, M. V., Shgun, A. A., Andreeva, N. A., Trilisenko, L. V., Kulakovskaya, T. V., Ryasanova, L. P., and Kulaev, I. S. (2013) Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homologous and heterologous PPN1 genes, Biochemistry (Moscow), 78, 946–953.
Rubin, G. M. (1973) The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid, J. Biol. Chem., 11, 3860–3875.
Andreeva, N. A., and Okorokov, L. A. (1993) Purification and characterization of highly active and stable polyphosphatase from Saccharomyces cerevisiae cell envelope, Yeast, 9, 127–139.
Bensandoun, A., and Weinstein, D. (1976) Assay of protein in the presence of interfering materials, Anal. Biochem., 70, 241–250.
Vagabov, V. M., Trilisenko, L. V., and Kulaev, I. S. (2000) Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 65, 349–355.
Lichko, L. P., Kulakovskaya, T. V., Kulakovskaya, E. V., and Kulaev, I. S. (2008) Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve, Biochemistry (Moscow), 73, 985–989.
Chavez, F. P., Mauriaca, C., and Jerez, C. A. (2009) Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria, BMC Res. Notes, 2, 50; doi: 10.1186/1756-0500-2-50.
Abramov, A. Y., Fraley, C., Diao, C. T., Winkfein, R., Colicos, M. A., Duchen, M. R., French, R. J., and Pavlov, E. (2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death, Proc. Natl. Acad. Sci. USA, 104, 18091–18096.
Kulakovskaya, T. V., Andreeva, N. A., Trilisenko, L. V., Suetin, S. V., Vagabov, V. M., and Kulaev, I. S. (2005) Accumulation of polyphosphates and expression of high molecular weight exopolyphosphatase in the yeast Saccharomyces cerevisiae, Biochemistry (Moscow), 70, 980–985.
Kulakovskaya, T. V., Andreeva, N. A., and Kulaev, I. S. (1997) Adenosine-5′-tetraphosphate and guanosine-5′-tetraphosphate — new substrates of the cytosol exopoly-phosphatase of Saccharomyces cerevisiae, Biochemistry (Moscow), 62, 1180–1184