PP-based 24 GHz wearable antenna
Wireless Networks - Trang 1-16 - 2023
Tóm tắt
A wearable millimetre-wave radar antenna operating in 24.05–24.25 GHz for imaging applications in collision avoidance to assist visually impaired people is presented. Non-uniform excitation for the series end-fed 1 × 10 array antenna is optimized in simulation achieving a modified Dolph–Chebyshev distribution, which provides improved performance in terms of beam width, Side-lobe level and Gain. Commercial RO3003 and eco-friendly polypropylene (PP) are considered as substrates for comparison purposes, being the PP electromagnetically characterized for the first time at such high frequencies. Consistent agreement between simulation and measurement results is achieved for antenna prototypes on both dielectrics. The impedance matching bandwidth is analysed for the antenna on PP also under bent conditions. The overall size of the compact, low-cost, eco-friendly and flexible antenna on PP is 98.68 × 14.4 × 0.52 mm3 and, according to literature survey, it overcomes the state of the art on wearable radar antennas at 24 GHz.
Tài liệu tham khảo
Scalise, L., et al. (2012). Experimental investigation of electromagnetic obstacle detection for visually impaired users: A comparison with ultrasonic sensing. IEEE Transactions on Instrumentation and Measurement, 61(11), 3047–3057. https://doi.org/10.1109/TIM.2012.2202169
Strada, J. (2016). Visually impaired: Assistive technologies challenges and coping strategies. Nova Science Pub Inc.
Abreu, D., Toledo, J., Codina, B., & Suárez, A. (2021). Low-cost ultrasonic range improvements for an assistive device. Sensors, 21(12), 4250. https://doi.org/10.3390/s21124250
Cardillo, E., & Caddemi, A. (2019). Insight on electronic travel aids for visually impaired people: A review on the electromagnetic technology. Electronics, 8, 1281. https://doi.org/10.3390/electronics8111281
Cardillo, G. E., Li, C., & Caddemi, A. (2022). Millimeter-wave radar cane: A blind people aid with moving human recognition capabilities. IEEE Journal of Electromagnetics, Rf and Microwaves in Medicine and Biology, 6(2), 204–211. https://doi.org/10.1109/JERM.2021.3117129
Plikynas, D., Zvironas, A., Gudauskis, M., Budrionis, A., Daniusis, P., & Sliesoraityté, I. (2020). Research advances of indoor navigation for blind people: A brief review of technological instrumentation. IEEE Instrumentation & Measurement Magazine, 23(4), 22–32. https://doi.org/10.1109/MIM.2020.9126068
Zvironas, A., Gudauskis, M., & Plikynas, D. (2019). Indoor electronic traveling aids for visually impaired: Systemic review. International Conference on Computational Science and Computational Intelligence (CSCI), 2019, 936–942. https://doi.org/10.1109/CSCI49370.2019.00178
Long, N., Yan, H., Wang, L., Li, H., & Yang, Q. (2022). Unifying obstacle detection, recognition, and fusion based on the polarization color stereo camera and LiDAR for the ADAS. Sensors, 22, 2453. https://doi.org/10.3390/s22072453
Di Mattia, V., et al. (2014). An electromagnetic device for autonomous mobility of visually impaired people. In 2014 44th European Microwave Conference (pp. 472–475). https://doi.org/10.1109/EuMC.2014.6986473
Kwiatkowski, P., Jaeschke, T., Starke, D., Piotrowsky, L., Deis, H., & Pohl, N. (2017). A concept study for a radar-based navigation device with sector scan antenna for visually impaired people. First IEEE MTT-S International Microwave Bio Conference (IMBIOC), 2017, 1–4. https://doi.org/10.1109/IMBIOC.2017.7965796
Gao, Y., Ghasr M. T., & Zoughi, R. (2018). Effects of translational position error on microwave synthetic aperture radar (SAR) imaging systems. In 2018 IEEE international instrumentation and measurement technology conference (I2MTC) (pp. 1–6). https://doi.org/10.1109/I2MTC.2018.8409556
Álvarez, H. F., ÁLvarez-Narciandi, G., Las-Heras, F., & Laviada, J. (2021). System based on compact mmWave radar and natural body movement for assisting visually impaired people. IEEE Access, 9, 125042–125051. https://doi.org/10.1109/ACCESS.2021.3110582
Klotz, M., & Rohling, H. (2001). A 24 GHz short range radar network for automotive applications, In 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559), Beijing, China (pp. 115–119). https://doi.org/10.1109/ICR.2001.984635
Ju, Y., Jin, Y., & Lee, J. (2014). Design and implementation of a 24 GHz FMCW radar system for automotive applications. International Radar Conference Lille, 2014, 1–4. https://doi.org/10.1109/RADAR.2014.7060385
Richards, M. A., Scheer, J. A., Holm, W. A. (2010). Principles of modern radar: Basic principles, SciTech Publishing-An Imprint of the IET 379 Thornall Street Edison, NJ 08837, ISBN: 978-1-891121-52-4.
Skolnik, M. L. (2001). Introduction to radar systems (3rd ed.). McGraw-Hill.
Heuel, S., & Rohling, H. (2010). Pedestrian recognition based on 24 GHz radar sensors. In 11-th International Radar Symposium (pp. 1–6).
Peng, Z., Muñoz-Ferreras, J., Gómez-García, R., Ran, L., & Li, C. (2016). 24-GHz biomedical radar on flexible substrate for ISAR imaging. IEEE MTT-S International Wireless Symposium (IWS), 2016, 1–4. https://doi.org/10.1109/IEEE-IWS.2016.7585400
ETSI EN 302 288-1. (2005). Electromagnetic compatibility and Radio Spectrum Matters (ERM); Short Range Devices; Road Transport and Traffic Telematics (RTTT); Short range radar equipment operating in the 24 GHz range; Part 1: Technical requirements and methods of measurement. European Telecommunications Standards Institute.
Xiang, Yi., & Fang, G. (2019). Liang Cheng Wang, Liu Bei, Chenyang Li, Kaituo Yang, Chirn Chye and Quan Xue, A dual band 24 / 77 GHz receiver for automotive radar applications. IEEE Access, 7, 48053–48059. https://doi.org/10.1109/ACCESS.2019.2904493
Dewantari, A., Jeon, S., Kim, S., Kim, S., Kim, J., & Ka, M. (2016). Comparison of array antenna designs for 77GHz radar applications. In Progress in Electromagnetic Research Symposium (PIERS), pp. 1092–1096.
Balanis, C. A. (2016). Antenna theory analysis and design (4th ed.). Wiley.
Pozar, D. M., & Schaubert, D. H. (1995). Microstrip antenna array design. Microstrip antennas: The analysis and design of microstrip antennas and arrays (pp. 267–308). IEEE.
Yin, J., Wu, Q., Yu, C., Wang, H., & Hong, W. (2017). Low-sidelobe-level series-fed microstrip antenna array of unequal interelement spacing. IEEE Antennas and Wireless Propagation Letters, 16, 1695–1698. https://doi.org/10.1109/LAWP.2017.2666427
Dolph, C. L. (1946). A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proceedings of the IRE, 34, 335–348.
Lau, B., & Leung, Y. (1999). Analysis of Dolph-Chebyshev patterns for uniform linear arrays. SPL-TR-013, ATRI, Curtin Uni of Tech, 181–185.
Tseng, C. Y., & Griffiths, L. J. (1992). A simple algorithm to achieve desired patterns for arbitrary arrays. IEEE Transaction Signal Processing, 40, 2737–2746.
Babas, D., & Sahalos, J. (2007). Synthesis method of series-fed microstrip antenna arrays. Electronics Letters, 43(2), 78–80. https://doi.org/10.1049/el:20073391
Otto, S., Chen, Z. (2009). A taper optimization for pattern synthesis of microstrip series-fed patch array antennas. In Proceedings of the IEEE EuWIT conference.
Kothapudi, V. K., & Kumar, V. (2019). SFCFOS uniform and Chebyshev amplitude distribution linear array antenna for K-band applications. Journal of Electromagnetic Engineering and Science, 19(1), 64–70. https://doi.org/10.26866/jees.2019.19.1.64
Rogers Corp Laminates. (2022). Datasheet of the RO3003 dielectric material. https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/ro3000-laminate-data-sheet-ro3003----ro3006----ro3010----ro3035.pdf. Accessed on 18 September 2022.
Directive 2011/65/EU of the European Parliament and of the Council. (2022). https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32011L0065&from=EN. Accessed on 18 September 2022.
Alsabri, A., Furqan, T., & Al-Ghamdi, S. G. (2022). Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today: Proceedings, 56, 2245–2251.
Suksiripattanapong, C., Phetprapai, T., Singsang, W., Phetchuay, C., Thumrongvut, J., & Tabyang, W. (2022). Utilization of recycled plastic waste in fiber reinforced concrete for eco-friendly footpath and pavement applications. Sustainability, 14, 6839. https://doi.org/10.3390/su14116839
Bora, R. R., Wang, R., & You, F. (2020). Waste polypropylene plastic recycling toward climate change mitigation and circular economy: Energy. Environmental and Technoeconomic Perspectives, ACS Sustainable Chemical Engineering, 8(43), 16350–16363.
Galve, J. E., Elduque, D., Pina, C., & Javierre, C. (2022). Life cycle assessment of a plastic part injected with recycled polypropylene: A comparison with alternative virgin materials. International Journal of Precision Engineering and Manufacturing-Green Technology., 9, 919–932. https://doi.org/10.1007/s40684-021-00363-2
de Cos, M. E., & Las-Heras, F. (2013). Polypropylene-based dual-band CPW-fed monopole antenna [antenna appcations corner]. IEEE Antennas and Propogation Magazine, 55(3), 264–273. https://doi.org/10.1109/MAP.2013.6586683
Garcia-Gamez, L., Bernard, L., Collardey, S., Covic, H., Sauleau, R., Mahdjoubi, K., Potier, P., & Pouliguen, P. (2019). Compact GNSS metasurface-inspired cavity antennas. IEEE Antennas and Wireless Propagation Letters, 18(12), 2652–2656. https://doi.org/10.1109/LAWP.2019.2947791
Campo, C., Bernard, L., Boeglen, H., Hengy, S., & Paillot, J. (2018). Software-defined radio system for tracking application. In 12th European conference on antennas and propagation (EuCAP 2018) (pp. 1–5). https://doi.org/10.1049/cp.2018.0582
Causse, A., Rodriguez, K., Bernard, L., Sharaiha, A., & Collardey, S. (2021). Compact bandwidth enhanced cavity-backed magneto-electric dipole antenna with outer γ-shaped probe for GNSS bands. Sensors, 21(11), 3599. https://doi.org/10.3390/s21113599
Causse, A., Bernard, L., Collardey, S., & Sharaiha, A. (2021). Small CP cavity-backed magneto-electric antenna with parasitic elements for GNSS applications. In 15th European conference on antennas and propagation (EuCAP) (pp. 1–5). https://doi.org/10.23919/EuCAP51087.2021.9411228
Garcia-Gamez, L., Bernard, L., Sauleau, R., Collardey, S., Mahdjoubi, K., Pouliguen, P., et al. (2022). Circularly-polarized GNSS metasurface antenna with two feed points in a sub-wavelength metallic cavity. In 16th European conference on antennas and propagation (EuCAP), Madrid, Spain (pp. 1–4). https://doi.org/10.23919/EuCAP53622.2022.9769030
Bernard, L., Campo C., & Roussel, E. (2023). Eco-friendly based substrates for telemetry antennas in UHF- and S-bands. In 2023 17th European conference on antennas and propagation (EuCAP), Florence, Italy (pp. 1–5). https://doi.org/10.23919/EuCAP57121.2023.10133806
Application Note. (2018). Keysight 85072A 10GHz Split Cylinder Resonator, Technical Overview, literature number 5989–6182EN. Retrieved December 2022 from https://www.keysight.com/us/en/assets/7018-01496/technical-overviews/5989-6182.pdf
Baker-Jarvis, J., Janezic, M. D., & Degroot, D. C. (2010). High-frequency dielectric measurements. IEEE Instrumentation & Measurement Magazine, 13(2), 24–31. https://doi.org/10.1109/MIM.2010.5438334
Application Note. (2020). Basics of measuring the dielectric properties of materials. Keysight Technologies. Retrieved January 2023 from https://www.keysight.com/us/en/assets/7018-01284/application-notes/5989-2589.pdf
Application Note. (2020). N1501A Dielectric probe kit 10 MHz to 50 GHz. Keysight Technologies. Retrieved December 2022 from https://www.keysight.com/us/en/assets/7018-04631/technical-overviews/5992-0264.pdf
Application Note. (2017). Split post dielectric resonators for dielectric measurements of substrates, literature number 5989–5384EN. Keysight Technologies. Retrieved January 2023 from https://www.keysight.com/us/en/assets/7018-01416/application-notes/5989-5384.pdf
Skocik, P., & Neumann, P. (2015). Measurement of complex permittivity in free space. Procedia Engineering, 100, 100–104. https://doi.org/10.1016/j.proeng.2015.01.347
Pérez-Escribano, M., & Márquez-Segura, E. (2021). Parameters characterization of dielectric materials samples in microwave and millimeter-wave bands. IEEE Transactions on Microwave Theory and Techniques, 69(3), 1723–1732. https://doi.org/10.1109/TMTT.2020.3045211
Pérez-Escribano, M., & Márquez-Segura, E. (2021). Random errors in broadband characterization of the propagation constant of transmission lines using multiple two-port measurements. IEEE Access, 9, 59038–59047. https://doi.org/10.1109/ACCESS.2021.3073173
Latti, K. P., Kettunen, M., Strom, J., & Silventoinen, P. (2007). A review of microstrip T-Resonator method in determining the dielectric properties of printed circuit board materials. IEEE Transactions on Instrumentation and Measurement, 56(5), 1845–1850. https://doi.org/10.1109/TIM.2007.903587
Vorlıček, J., Rusz, J., Oppl, L., & Vrba, J. (2010). Complex permittivity measurement of substrates using ring resonator. In Technical computing Bratislava. https://www2.humusoft.cz/www/papers/tcb10/107_vorlicek.pdf
Thompson, D., Falah, M., Fang, X., & Linton, D. (2003). Dielectric characterization using the microstrip resonator method. In 2003 high frequency postgraduate student colloquium (Cat. No.03TH8707), Belfast, Ireland (pp. 23–26). https://doi.org/10.1109/HFPSC.2003.1242298
Metzler, T. (1981). Microstrip series arrays. IEEE Transactions on Antennas and Propagation, 29(1), 174–178.
IEEE Recommended Practice for Antenna Measurements. (2022). In IEEE Std 149-2021 (Revision of IEEE Std 149-1977) (pp.1–207). https://doi.org/10.1109/IEEESTD.2022.9714428
Krauss, J. D. (1988). Antennas. New York: McGraw Hill.
Elliot, R.S. (1964). Beamwidth and directivity of large scanning arrays. The Microwave Journal, pp. 74–82.
Qian, J., Zhu, H., Tang, M., & Mao, J. (2021). A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor. IEEE Antennas and Wireless Propagation Letters, 20(7), 1220–1224. https://doi.org/10.1109/LAWP.2021.3075887
Chen, Y., Liu, Y., Zhang, Y., Yue, Z., & Jia, Y. (2019). A 24GHz millimeter wave microstrip antenna array for automotive radar. In International Symposium on Antennas and Propagation (ISAP) (pp.1–2).
Banuprakash, R., Hebbar, H.G., Janani, N., Raghav, K.K., & Sudha, M. (2020). Microstrip array antenna for 24GHz automotive RADAR. In 7th international conference on smart structures and systems (ICSSS) (pp. 1–6).
Jia, Y., Liu, Y., & Zhang, Y. (2020). A 24 GHz microstrip antenna array with large space and narrow beamwidth. Microwave and Optical Technology Letters, 62, 1615–1620. https://doi.org/10.1002/mop.32190
Chaudhuri, S., Mishra, M., Kshetrimayum, R. S., Sonkar, R. K., Chel, H., & Singh, V. K. (2020). Rectangular DRA array for 24 GHz ISM-band applications. IEEE Antennas and Wireless Propagation Letters, 19(9), 1501–1505. https://doi.org/10.1109/LAWP.2020.3007585
Chen, Y., Shi, J., Xu, K., Lin, L., & Wang, L. (2023). A compact wideband Quasi-Yagi antenna for millimeter-wave communication. IEEE Antennas and Wireless Propagation Letters, 22(6), 1481–1485. https://doi.org/10.1109/LAWP.2023.3247429
Jin, H., Zhu, L., Liu, X., & Yang, G. (2018). Design of a microstrip antenna array with low side-lobe for 24GHz radar sensors. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018, 1–3.
Yang, W., Yang, Y., Che, W., Gu, L., & Li, X. (2016). A novel 24-GHz series-fed patch antenna array for radar system. IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 2016, 1–4. https://doi.org/10.1109/iWEM.2016.7505065
SAM-2432431750-KF-L1. K band microstrip patch array antenna. https://sftp.eravant.com/content/datasheets/SAM-2432431750-KF-L1.pdf
Kim, S., Kim, D. K., Kim, Y., Choi, J., & Jung, K. (2019). A 24 GHz ISM-band doppler radar antenna with high isolation characteristic for moving target sensing applications. IEEE Antennas and Wireless Propagation Letters, 18(7), 1532–1536. https://doi.org/10.1109/LAWP.2019.2922008
Kuo, C.-H., Lin, C.-C., & Sun, J.-S. (2017). Modified microstrip franklin array antenna for automotive short-range radar application in blind spot information system. IEEE Antennas and Wireless Propagation Letters, 16, 1731–1734. https://doi.org/10.1109/LAWP.2017.2670231
Flórez Berdasco, A., de Cos Gómez, M. E., Fernández Álvarez, H., & Las-Heras Andrés, F. (2023). Millimeter wave array-HIS antenna for imaging applications. Applied Physics: A, 129, 397. https://doi.org/10.1007/s00339-023-06676-0
Slovic, M., Jokanovic, B., & Kolundzija, B. (2005). High efficiency patch antenna for 24 GHz anticollision radar. TELSIKS 2005-International Conference on Telecommunication in Modern Satellite Cable and Broadcasting Services, 1, 20–23.
He, Y., Ma, K., Yan, N., Wang, Y., & Zhang, H. (2023). 3-D SISL feeding network for 2-D cavity-backed endfire dipole array at 24 GHz. IEEE Antennas and Wireless Propagation Letters, 22(5), 990–994. https://doi.org/10.1109/LAWP.2022.3229841
Jung, Y., Park, D., & Jung, C. W. (2010). Low cost 24GHz patch array antenna for high sensitivity EM sensor. Asia-Pacific Microwave Conference, 2010, 2208–2211.
Poggiani, M., Mezzanotte, P., Mariotti, C., Virili, M., Orecchini, G., Alimenti, F., et al. (2014). 24 GHz patch antenna network in cellulose-based materials for green wireless internet applications. Science measurement and Technology IET, 8(6), 342–349. https://doi.org/10.1049/iet-smt.2013.0279
Zhou, H., Geng, J., & Jin, R. (2022). A magnetic Yagi-Uda antenna with vertically polarized endfire radiation in millimeter-wave band applying higher order mode. IEEE Transactions on Antennas and Propagation, 70(10), 8941–8950. https://doi.org/10.1109/TAP.2022.3177476