POSS‐nylon 6 nanocomposites: Influence of POSS structure on surface and bulk properties

Journal of Polymer Science, Part B: Polymer Physics - Tập 47 Số 11 - Trang 1088-1102 - 2009
Rahul Misra1, Bruce X. Fu2, Andreas Plagge1, Sarah E. Morgan1
1School of Polymers and High Performance Materials; The University of Southern Mississippi; Hattiesburg; Mississippi; 39406
2Hybrid Plastics Inc., Hattiesburg, Mississippi 39401

Tóm tắt

AbstractHybrid organic/inorganic nanocomposites based on polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals and nylon 6 were prepared via melt mixing. Two structurally and chemically different POSS molecules, a closed cage, nonpolar octaisobutyl POSS (Oib‐POSS) and an open cage, polar trisilanolphenyl POSS (Tsp‐POSS) with differing predicted solubility parameters were evaluated in the nylon matrix. Surface analysis, including quasi‐static and dynamic nanoindentation and nanotribological techniques, revealed exceptional improvements in modulus and hardness along with significant reductions in friction. Additionally, surface wetting characteristics of the nylon were reversed, with POSS incorporation yielding low surface energy, highly hydrophobic surfaces. AFM, TEM/EDAX, spectroscopic techniques and thermomechanical analysis were used to evaluate nanoscale dispersion and bulk properties of the composites. Both POSS molecules exhibit preferential surface segregation behavior in the nylon matrix. Tsp‐POSS, with its higher predicted solubility in nylon, exhibited enhanced dispersion and tribomechanical properties at both nano and bulk scale. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1088–1102, 2009

Từ khóa


Tài liệu tham khảo

10.1080/02603599508035785

10.1002/(SICI)1099-0739(199904)13:4<311::AID-AOC847>3.0.CO;2-1

10.1002/(SICI)1097-4628(19990906)73:10<1993::AID-APP18>3.0.CO;2-Q

10.1002/(SICI)1099-0488(199808)36:11<1857::AID-POLB7>3.0.CO;2-N

10.1021/ma00060a053

10.1021/cm950536x

10.1021/ma981210n

10.1021/ma047304g

10.1002/marc.200500274

10.1002/polb.20691

10.1021/ma00128a067

10.1021/ma9800764

10.1021/ma960609d

10.1016/S0032-3861(00)00389-X

10.1016/j.polymer.2005.09.070

10.1016/j.polymer.2005.06.121

10.1002/polb.20878

10.1002/polb.21261

10.1016/j.polymer.2004.04.057

10.1016/S0032-3861(00)00072-0

10.1016/j.cossms.2004.03.002

Mabry J. M., 2005, ACS Polymer Preprints, 46, 630

10.1126/science.1148326

10.1002/pat.1229

10.1021/la702065z

10.1021/la701625g

10.1021/la704062n

10.1021/ma047636l

10.1177/095400830201400107

10.1016/j.polymer.2006.02.025

10.1295/polymj.38.31

Tabor D., 1951, The Hardness of Metals

10.1557/JMR.1992.1564

10.1016/j.polymer.2004.03.036

10.1166/jnn.2002.077

10.1016/j.polymertesting.2006.02.005

10.1016/j.biomaterials.2003.09.014

10.1063/1.1380218

10.1557/jmr.2006.0247

10.1002/app.26284

Bhushan B., 1999, Handbook of Micro/Nano Technology, 41

Harrick N. J., 1967, Internal Reflectance Spectroscopy

10.1021/la00059a012

10.1002/app.1969.070130815

Aharoni S. M., 1997, n‐Nylons

Hoy K. L. J., 1970, Paint Technol, 42, 76

10.1080/10601320701350807

Hoy K. L., 1975, In Polymer Handbook, IV

Grulke E. A., 1999, In Polymer Handbook, VII/675ff

10.1002/polb.10731

10.1016/S0032-3861(99)00276-1

10.1016/j.polymer.2004.06.018

Urban M. W., 1993, Vibrational Spectroscopy of Molecules and Macromolecules on Surfaces

10.1366/0003702054615142

10.1039/b007925l

10.1021/ma061886f

10.1002/polb.10028