POLYPHASIC STUDY OF ANTARCTIC CYANOBACTERIAL STRAINS1

Journal of Phycology - Tập 42 Số 6 - Trang 1257-1270 - 2006
Arnaud Taton1,2, Stana Grubisic1, Damien Ertz3,2, Dominic A. Hodgson4, Raffaella Piccardi5, Natascia Biondi5, Mario R. Tredici5, Mariangela Mainini6, Daniele Losi6, Flavia Marinelli7,6, Annick Wilmotte1
1Centre d'Ingénierie des Protéines, Institut de Chimie B6, Université de Liège, B-4000 Liège, Belgique
2Laboratoire d'Algologie, de Mycologie et de Systématique Expérimentale, Institut de Botanique B22, Université de Liège, B-4000 Liège, Belgique
3Département Bryophyta—Thallophyta, Jardin Botanique National de Belgique, Domaine de Bouchout B-1860 Meise, Belgique
4British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
5Dipartimento di Biotecnologie Agrarie, Universita delgi Studi di Firenze, P. le delle Cascine 24, 50144 Firenze, Italy
6Vicuron Pharmaceuticals (formerly Biosearch Italia S.p.A), Via R. Lepetit 34, 21040 Gerenzano, Varese, Italy
7Dipartimento di Biotecnologia e Scienze Molecolari, Universitá dell'Insubria, Via J. H. Dunant 3, 21100 Varese, Italy

Tóm tắt

We isolated 59 strains of cyanobacteria from the benthic microbial mats of 23 Antarctic lakes, from five locations in two regions, in order to characterize their morphological and genotypic diversity. On the basis of their morphology, the cyanobacteria were assigned to 12 species that included four Antarctic endemic taxa. Sequences of the ribosomal RNA gene were determined for 56 strains. In general, the strains closely related at the 16S rRNA gene level belonged to the same morphospecies. Nevertheless, divergences were observed concerning the diversity in terms of species richness, novelty, and geographical distribution. For the 56 strains, 21 operational taxonomic units (OTUs, defined as groups of partial 16S rRNA gene sequences with more than 97.5% similarity) were found, including nine novel and three exclusively Antarctic OTUs. Sequences of Petalonema cf. involvens and Chondrocystis sp. were determined for the first time. The internally transcribed spacer (ITS) between the 16S and the 23S rRNA genes was sequenced for 33 strains, and similar groupings were observed with the 16S rRNA gene and the ITS, even when the strains were derived from different lakes and regions. In addition, 48 strains were screened for antimicrobial and cytotoxic activities, and 17 strains were bioactive against the gram‐positive Staphylococcus aureus, or the fungi Aspergillus fumigatus and Cryptococcus neoformans. The bioactivities were not in coincidence with the phylogenetic relationships, but rather were specific to certain strains.

Từ khóa


Tài liệu tham khảo

10.1017/S095410209100007X

10.1016/S0040-4020(01)00931-0

10.1016/j.tibtech.2003.08.008

10.1111/j.1529-8817.2005.04062.x

10.1128/AEM.69.7.3858-3867.2003

10.1046/j.1462-2920.2003.00436.x

10.1099/mic.0.25475-0

Felsenstein J., 1989, PHYLIP—Phylogeny Inference Package (Version 3.2), Cladistics, 5, 164

10.1127/0029-5035/2002/0074-0001

10.1038/30839

10.1111/j.1365-2672.2004.02477.x

Geitler L., 1932, Rabenhorst's Kryptogamenflora von Deutschland, Osterreich und der Schweiz, 1

Gordon D. A., 2000, Origin and phylogeny of microbes living in permanent Antarctic lake ice, Microb. Ecol., 39, 197

10.1017/S0954102001000372

10.1099/00221287-146-6-1275

10.1111/j.1462-2920.2005.00717.x

Komárek J., 1999, Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica—a survey, Arch. Hydrobiol., 94, 181

Komárek J., 1989, Modern approach to the classification system of cyanophytes 4. Nostocales, Arch. Hydrobiol., 82, 247

Komárek J., 1998, Cyanoprokaryota 1. Teil Chroococcales

Komárek J., 2005, Cyanoprokaryota 2. Teil Oscillatoriales, 1

Komárek J., 1990, Cryptogams of the Himalayas, 1

10.1016/S0168-1656(99)00058-9

Ludwig W., 2004, ARB, a software environment for sequence data, 32, 1363

10.1093/nar/29.1.173

Marinelli F., 2004, Microbial Genetic Resources and Biodiscovery, 163

Martiny J. B. H., 2006, Microbial biogeography, putting the microorganisms on the map, 4, 102

10.1128/AEM.67.7.3002-3009.2001

10.1046/j.1529-8817.2001.037004650.x

10.1007/BF02198845

10.1111/j.1574-6968.1999.tb13443.x

Priscu J. C., 1998, Perennial Antarctic lake ice, an oasis for life in a polar desert, 280, 2095

Rippka R., 1979, Generic assignment, strains histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol, 111, 1

Rudi K., 1997, Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the region V6, V7, and V8, Appl. Environ. Microbiol., 63, 2593, 10.1128/aem.63.7.2593-2599.1997

10.1111/j.1365-2427.2004.01186.x

10.1017/S0954102000000237

10.1128/AEM.67.1.469-472.2001

Stackebrandt E., 1994, Taxonomic note, a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, 44, 846

Taton A., 2003, Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (Dry Valleys, Antarctica), a morphological and molecular approach, 69, 5157

10.1007/978-3-7091-6542-3_2

10.1111/j.1550-7408.1999.tb04612.x

Van de Peer Y., 1997, Construction of evolutionary distance trees with TREECON for Windows, accounting for variation in nucleotide substitution rate among sites, 13, 227

10.1078/07232020260517742

Vincent W. F., 2000, The Ecology of Cyanobacteria, 321

Ward D. M., 1998, A natural view of microbial diversity within hot spring cyanobacterial mat communities, Microbiol. Mol. Biol. Rev., 62, 1353, 10.1128/MMBR.62.4.1353-1370.1998

10.1007/978-3-662-13187-9_9

10.1007/978-94-011-0227-8_1

Wilmotte A., 2001, Bergey's Manual of Systematic Bacteriology, 487

10.1128/AEM.70.2.973-983.2004