POLYPHASIC CHLOROPHYLL a FLUORESCENCE TRANSIENT IN PLANTS AND CYANOBACTERIA*

Photochemistry and Photobiology - Tập 61 Số 1 - Trang 32-42 - 1995
Reto J. Strasserf1, Alaka Srivastava1, David W Krogmann2
1Bioenergetics Laboratory, University of Geneva, 1254, Jussy/Geneva, Switzerland
2department of Plant Biology, 265 Morril Hall, University of Illinois, Urbana, IL 61801, USA

Tóm tắt

Abstract— The variable chlorophyll (Chl) a fluorescence yield is known to be related to the photochemical activity of photosystem II (PSII) of oxygen‐evolving organisms. The kinetics of the fluorescence rise from the minimum yield, F0, to the maximum yield, Fm, is a monitor of the accumulation of net reduced primary bound plastoquinone (QA) with time in all the PSII centers. Using a shutter‐less system (Plant Efficiency Analyzer, Hansatech, UK), which allows data accumulation over several orders of magnitude of time (40 μs to 120 s), we have measured on a logarithmic time scale, for the first time, the complete polyphasic fluorescence rise for a variety of oxygenic plants and cyanobacteria at different light intensities. With increasing light intensity, the fluorescence rise is changed from a typical O‐I‐P characteristic to curves with two intermediate levels J and I, both of which show saturation at high light intensity but different intensity dependence. Under physiological conditions, Chl a fluorescence transients of all the organisms examined follow the sequence of O‐J‐I‐P. The characteristics of the kinetics with respect to light intensity and temperature suggest that the O‐J phase is the photochemical phase, leading to the reduction of QA to QA. The intermediate level I is suggested to be related to a heterogeneity in the filling up of the plastoquinone pool. The P is reached when all the plastoquinone (PQ) molecules are reduced to PQH2. The addition of 3‐(3–4‐dichlorophenyl)‐1,1‐dimethylurea leads to a transformation of the O‐J‐I‐P rise into an O‐J rise. The kinetics of O‐J‐I‐P observed here was found to be similar to that of O‐I1‐I2‐P, reported by Neubauer and Schreiber (Z. Naturforsch.42c, 1246–1254, 1987). The biochemical significance of the fluorescence steps O‐J‐I‐P with respect to the filling up of the plastoquinone pool by PSII reactions is discussed.

Từ khóa


Tài liệu tham khảo

10.1007/BF01516164

10.1016/B978-0-12-294350-8.50011-8

Lavorel J., 1977, In vivo chlorophyll fluorescence, Top. Photosynth., 2, 203

Govindjee J. Amesz, 1986, Light Emission by Plants and Bacteria

10.1111/j.1751-1097.1994.tb03937.x

Karukstis K. K., 1991, Chlorophyll, 769

Duysens L. N. M., 1963, Studies on Microalgae and Photosynthetic Bacteria, 353

10.1073/pnas.69.11.3420

10.1073/pnas.69.6.1358

10.1007/978-3-642-66505-9_8

10.1146/annurev.pp.29.060178.002021

10.1016/0005-2728(76)90068-2

10.1073/pnas.74.8.3382

10.1016/0005-2728(77)90209-2

Butler W. L., 1977, Proceedings of the Fourth International Congress on Photosynthesis, 11

Joliot A., 1964, Etudes cinetiques de la reaction photochimique libérant l'oxygene au cours de la photosynthése, C.R. Acad. Sci. Paris, 259, 4622

Strasser R. J., 1992, An equilibrium model for electron transfer in photosystem II acceptor complex: an application to Chlamydomonas reinhardtii cells of Dl mutants and those treated with formate, Arch. Sci. (Genéve), 45, 207

Lavergne J.andH. W.Trissl(1994)Fluorescence induction from photosystem II: an analytical equation for the yield of photochemistry and fluorescence derived from analysis of a model including exciton‐radical pair equilibrium and restricted energy transfer between photosynthetic units.Aust. J. Plant Physiol.(In press).

10.1016/0022-5193(76)90150-8

10.1016/B978-0-12-208661-8.50016-4

Renger G., 1992, Energy transfer and trapping in photosystem II, Top. Photosynth., 11, 45

Govindjee, 1989, Photosynthesis, C. S. French International Symposium, 71

Holzwarth A. R., 1991, Chlorophylls, 1125

10.1016/0304-4173(83)90004-6

10.1073/pnas.90.16.7466

Joliot A., 1971, Proceedings of the IInd International Congress on Photosynthesis Research, Stresa, 26

Delosme R., 1971, Proceedings of the IInd International Congress on Photosynthesis Research, 187

10.1007/BF00016272

10.1515/znc-1987-11-1218

10.1007/BF00033157

10.1007/BF00029387

10.1016/B978-0-12-294310-2.50023-8

10.1146/annurev.pp.42.060191.001525

10.1080/15476510.1988.10401466

10.1016/S0006-3495(69)86365-4

10.1515/znc-1987-11-1217

10.1016/0005-2728(67)90115-6

10.1007/BF00033166

Strasser R. J., 1991, Regulation of Chloroplast Biogenesis, 423

Strasser R.J., 1992, Research in Photosynthesis, 29

Jüttner F., 1983, Environmental factors affecting the formation of mesityloxide, dimethylallylic alcohol and other volatile compounds extracted by Anabaena cylindrica, J. Gen. Microbiol., 129, 407

10.1007/BF00035006

10.1016/S0006-3495(69)86366-6

10.1146/annurev.pp.37.060186.002003

10.1146/annurev.pp.45.060194.003221

10.1016/B978-0-12-294310-2.50022-6

10.1016/0005-2728(73)90235-1

Mohanty P., 1973, Light induced changes in the fluorescence yield of chlorophyll a in Anacystic nidulans. II. The fast changes and the effect of photosynthetic inhibitor on both fast and slow fluorescence induction, Plant Cell Physiol., 14, 611

Pakrasi H. B., 1992, Protein engineering of photosystem II. Top, Photosynth., 11, 231

Strasser R. J., 1981, Structure and Molecular Organization of the Photosynthetic Apparatus, 727

Eggenberg P., 1992, Research in Photosynthesis, 611

Strasser R. J., 1990, “A Votre Sante” pourraient nous dire les martiens lorsque nos foréts “éternuent.”, Cah. Fac. Sci. Univ. Genéve, 20, 171

Strasser R. J., 1994, Der Mensch im Strahlungsfeld der Sonne, 67

Govindjee(1994)Sixty‐three years since Kautsky chlorophyllafluorescence.Aust. J. Plant Physiol.(In press).

Matsuda H., 1985, Warren L. Butler (1925–1984): Science Man Nature

Lavorel J., 1963, La Photosynthèse, 161

10.1016/0005-2728(68)90106-0

10.1016/0005-2728(77)90019-6

10.1016/0005-2728(77)90039-1