PLS-regression: a basic tool of chemometrics

Chemometrics and Intelligent Laboratory Systems - Tập 58 Số 2 - Trang 109-130 - 2001
Svante Wold1, Michael Sjöstróm1, Lennart Eriksson2
1Research Group for Chemometrics, Institute of Chemistry, Umeå University, SE‐901 87 Umeå, Sweden
2Umetrics AB, Box 7960, SE‐907 19 Umeå, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wold, 1982, Soft modelling. The basic design and some extensions, vols. I and II

Wold, 1984, The collinearity problem in linear regression. The partial least squares approach to generalized inverses, SIAM J. Sci. Stat. Comput., 5, 735, 10.1137/0905052

Höskuldsson, 1988, PLS regression methods, J. Chemom., 2, 211, 10.1002/cem.1180020306

Höskuldsson, 1996, vol. 1

Wold, 1993, PLS—partial least squares projections to latent structures, 523

Tenenhaus, 1998

Gerlach, 1979, Partial least squares modelling with latent variables, Anal. Chim. Acta, 112, 417, 10.1016/S0003-2670(01)85039-X

El Tayar, 1992, Octan-1-ol-water partition coefficients of zwitterionic a-amino acids. Determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar components, J. Chem. Soc., Perkin Trans., 2, 79, 10.1039/P29920000079

Hellberg, 1986, The prediction of bradykinin potentiating potency of pentapeptides. An example of a peptide quantitative structure–activity relationship, Acta Chem. Scand., Ser. B, 40, 135, 10.3891/acta.chem.scand.40b-0135

Sandberg, 1998, New chemical dimensions relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids, J. Med. Chem., 41, 2481, 10.1021/jm9700575

Jackson, 1991

Burnham, 1999, Latent variable regression tools, Chemom. Intell. Lab. Syst., 48, 167, 10.1016/S0169-7439(99)00018-0

Burnham, 1996, Frameworks for latent variable multivariate regression, J. Chemom., 10, 31, 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-1

Manne, 1987, Analysis of two partial least squares algorithms for multivariate calibration, Chemom. Intell. Lab. Syst., 1, 187, 10.1016/0169-7439(87)80096-5

J. Trygg et al., This issue.

Nomikos, 1995, Multivariate SPC charts for monitoring batch processes, Technometrics, 37, 41, 10.2307/1269152

Nelson, 1996, Missing data methods in PCA and PLS: score calculations with incomplete observation, Chemom. Intell. Lab. Syst., 35, 45, 10.1016/S0169-7439(96)00007-X

Grung, 1998, Missing values in principal component analysis, Chemom. Intell. Lab. Syst., 42, 125, 10.1016/S0169-7439(98)00031-8

Wakeling, 1993, A test of significance for partial least squares regression, J. Chemom., 7, 291, 10.1002/cem.1180070407

Clark, 1993, The probability of chance correlation using partial least squares (PLS), Quant. Struct.-Act. Relat., 12, 137, 10.1002/qsar.19930120205

Shao, 1993, Linear model selection by cross-validation, J. Am. Stat. Assoc., 88, 486, 10.2307/2290328

Lindgren, 1993, The kernel algorithm for PLS I. Many observations and few variables, J. Chemom., 7, 45, 10.1002/cem.1180070104

Rännar, 1994, The kernel algorithm for PLS II. Few observations and many variables, J. Chemom., 8, 111, 10.1002/cem.1180080204

Esbensen, 1983, SIMCA, MACUP, SELPLS, GDAM, SPACE and UNFOLD: the ways towards regionalized principal components analysis and subconstrained N-way decomposition—with geological illustrations, 11

Kettaneh-Wold, 1994, Multivariate design of process experiments (M-DOPE), Chemom. Intell. Lab. Syst., 23, 39, 10.1016/0169-7439(93)E0072-C

Kvalheim, 1987, Maturity determination of organic matter in coals using the methylphenantrene distribution, Geochim. Cosmochim. Acta, 51, 1883, 10.1016/0016-7037(87)90179-7

Chu, 1995, A rank-one reduction formula and its applications to matrix factorizations, SIAM Rev., 37, 512, 10.1137/1037124

Denham, 1997, Prediction intervals in partial least squares, J. Chemom., 11, 39, 10.1002/(SICI)1099-128X(199701)11:1<39::AID-CEM433>3.0.CO;2-S

Efron, 1983, A leisurely look at the bootstrap, the jackknife, and cross-validation, Am. Stat., 37, 36, 10.2307/2685844

Martens, 2000, Modified jack-knife estimation of parameter uncertainty in bilinear modeling (PLSR), Food Qual. Preference, 11, 5, 10.1016/S0950-3293(99)00039-7

Wold, 1982, The indirect observation of molecular chemical systems, vols. I and II

Wold, 1999, PLS in chemistry, 2006

Kvalheim, 1992, The latent variable, an editorial, Chemom. Intell. Lab. Syst., 14, 1, 10.1016/0169-7439(92)80088-L

Frank, 1993, A statistical view of some chemometrics regression tools. With discussion, Technometrics, 35, 109, 10.2307/1269656

Wold, 1974, A theoretical foundation of extrathermodynamic relationships (linear free energy relationships), Chem. Scr., 5, 97

Belsley, 1980

Berglund, 1997, INLR, implicit non-linear latent variable regression, J. Chemom., 11, 141, 10.1002/(SICI)1099-128X(199703)11:2<141::AID-CEM461>3.0.CO;2-2

Wold, 2001, The GIFI approach to non-linear PLS modelling, J. Chemom., 15, 321, 10.1002/cem.679

Eriksson, 2000, GIFI-PLS: modeling of non-linearities and discontinuities in QSAR, QSAR, 19, 345

Eriksson, 2001, Multivariate process monitoring of a newsprint mill. Application to modelling and predicting COD load resulting from de-inking of modeling, J. Chemom., 15, 337, 10.1002/cem.678

Box, 1978

Sjöström, 1986, PLS discriminant plots, 461

Ståhle, 1987, Partial least squares analysis with cross-validation for the two-class problem: a Monte Carlo study, J. Chemom., 1, 185, 10.1002/cem.1180010306

Kettaneh-Wold, 1992, Analysis of mixture data with partial least squares, Chemom. Intell. Lab. Syst., 14, 57, 10.1016/0169-7439(92)80092-I