PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms

Annual Reviews - Tập 50 Số 1 - Trang 571-599 - 1999
Michael F. Thomashow1
1Department of Crop and Soil Sciences, Department of Microbiology, Michigan State University, East Lansing, Michigan 48824;

Tóm tắt

▪ Abstract  Many plants increase in freezing tolerance upon exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In this review, recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction are described. One of the important conclusions to emerge from these studies is that cold acclimation includes the expression of certain cold-induced genes that function to stabilize membranes against freeze-induced injury. In addition, a family of Arabidopsis transcription factors, the CBF/DREB1 proteins, have been identified that control the expression of a regulon of cold-induced genes that increase plant freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications as freezing temperatures are a major factor limiting the geographical locations suitable for growing crop and horticultural plants and periodically account for significant losses in plant productivity.

Từ khóa


Tài liệu tham khảo

10.1016/0011-2240(87)90036-8

10.1104/pp.104.4.1359

10.1111/j.1399-3054.1997.tb00556.x

10.1073/pnas.93.23.13404

10.1007/BF00029852

10.2135/cropsci1988.0011183X002800060001x

10.1016/0003-9861(86)90755-1

10.1104/pp.71.2.362

10.1111/j.1399-3054.1997.tb04785.x

10.1046/j.1365-313X.1993.03050713.x

10.1016/0167-4838(94)90081-7

10.1007/BF00014442

10.1046/j.1365-313X.1993.t01-19-00999.x

10.1002/bip.360370504

10.1096/fasebj.8.2.8119490

10.2135/cropsci1979.0011183X001900060005x

10.1007/BF00222940

10.1104/pp.106.4.1615

10.1007/BF00018452

10.1104/pp.87.3.745

10.1007/BF00028738

10.1046/j.1365-313x.1998.00310.x

10.1034/j.1399-3054.1997.1000215.x

10.1126/science.2145628

10.1006/cryo.1998.2089

10.1007/BF00216823

10.1146/annurev.pp.41.060190.001155

10.1002/elps.1150091115

10.1104/pp.84.3.872

Guy CL, 1989, Plant Physiol. Biochem., 27, 777

10.1016/0011-2240(88)90034-X

10.1105/tpc.10.4.539

10.1073/pnas.82.11.3673

10.1104/pp.93.3.1246

10.1139/g93-009

10.1007/BF00224248

10.1007/BF00020009

10.1007/BF00039030

10.1104/pp.113.4.1203

10.1104/pp.103.4.1047

Houde M, 1992, Mol. Gen. Genet., 234, 43, 10.1007/BF00272343

10.1093/jxb/47.3.291

10.1016/S1360-1385(98)01248-5

10.1146/annurev.arplant.47.1.377

Ishikawa M, 1990, Plant Cell Physiol., 31, 51

10.1105/tpc.10.7.1151

10.1105/tpc.9.11.1935

10.1038/hdy.1981.24

10.1126/science.280.5360.104

10.1007/BF00029607

10.1007/BF00049344

10.1105/tpc.6.9.1211

10.1073/pnas.93.20.11274

10.1104/pp.116.4.1367

10.1105/tpc.8.2.137

10.1105/tpc.8.3.489

10.1016/S0981-9428(98)80093-4

10.1104/pp.107.3.915

10.1007/BF00026794

10.1007/BF00017731

10.1007/BF00272740

10.1111/j.1399-3054.1985.tb04267.x

10.1104/pp.104.4.1341

10.1007/BF00027165

10.1139/g95-074

10.1126/science.7910981

Levitt J, 1980, Responses of Plants to Environmental Stresses.

10.1007/978-1-4899-0277-1

10.1007/s004380050376

10.1104/pp.99.2.519

Lisse T, 1996, Biol. Chem., 377, 555

10.1105/tpc.10.8.1391

10.1104/pp.116.1.403

Luo M, 1992, J. Biol. Chem., 267, 15367, 10.1016/S0021-9258(19)49543-4

10.1104/pp.107.1.141

10.1002/j.1460-2075.1996.tb00589.x

McKersie BD, Bowley SR. 1997. Active oxygen and freezing tolerance in transgenic plants. See Ref.68, pp. 203–14

10.1093/jxb/47.12.1919

10.1126/science.8197457

10.1016/0014-5793(93)80852-L

10.1073/pnas.93.2.765

10.1104/pp.102.3.873

10.1105/tpc.7.3.321

10.1046/j.1365-313X.1998.00070.x

10.1104/pp.102.3.873

10.1007/BF00019945

10.1007/BF00016077

10.1007/BF00014547

10.1105/tpc.7.2.173

10.1104/pp.60.4.499

10.1016/S0176-1617(86)80212-7

10.1016/S0014-5793(98)00116-1

10.1007/BF00224516

10.1023/A:1005717613224

10.1104/pp.111.4.1271

10.1071/AR9710021

10.1515/bchm.1998.379.6.633

10.1016/0011-2240(85)90184-1

10.1007/978-3-642-71745-1

10.1016/S1360-1385(98)01285-0

10.1034/j.1399-3054.1997.1010226.x

10.1006/bbrc.1998.9267

10.1104/pp.111.1.215

10.1038/hdy.1976.97

10.1146/annurev.pp.35.060184.002551

10.1073/pnas.95.24.14570

Steponkus PL, Uemura M, Webb MS. 1993.A contrast of the cryostability of the plasma membrane of winter rye and spring oat—two species that widely differ in their freezing tolerance and plasma membrane lipid composition.InAdvances in Low-Temperature Biology, ed. PL Steponkus, 2:211–312. London: JAI Press

Steponkus PL, 1993, Curr. Topics Plant Physiol., 10, 37

10.1073/pnas.94.3.1035

10.2135/cropsci1998.0011183X003800020035x

10.1073/pnas.83.8.2422

Sukumaran NP, 1972, HortScience, 7, 467, 10.21273/HORTSCI.7.5.467

10.1007/s004250050212

10.1016/S0065-2660(08)60525-8

10.1104/pp.118.1.1

10.1104/pp.109.1.15

Uemura M, Steponkus PL. 1997. Effect of cold acclimation on membrane lipid composition and freeze-induced membrane destabilization. See Ref.68, pp. 171–79

10.1016/S0014-5793(98)00418-9

10.1104/pp.108.3.1233

10.1007/s004380050635

10.1007/BF00021187

10.1104/pp.104.1.291

10.1104/pp.111.4.1011

10.1007/BF00039526

10.1007/BF00043662

10.1007/BF00021822

10.1105/tpc.8.4.659

10.1126/science.282.5386.115

10.1073/pnas.95.13.7799

10.1007/BF00277130

10.1105/tpc.6.2.251