PLA-HA/Fe3O4 magnetic nanoparticles loaded with curcumin: physicochemical characterization and toxicity evaluation in HCT116 colorectal cancer cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol. 2023;20(5):306–22. https://doi.org/10.1038/s41575-022-00736-1.
Fanotto V, Salani F, Vivaldi C, Scartozzi M, Ribero D, Puzzoni M, et al. Primary tumor resection for metastatic colorectal, gastric and pancreatic cancer patients: in search of scientific evidence to inform clinical practice. Cancers. 2023;15(3):900. https://doi.org/10.3390/cancers15030900.
Heemskerk-Gerritsen BA, Rookus MA, Aalfs CM, Ausems MG, Collée JM, Jansen L, et al. Improved overall survival after contralateral risk-reducing mastectomy in BRCA1/2 mutation carriers with a history of unilateral breast cancer: a prospective analysis. Int J Cancer. 2015;136(3):668–77. https://doi.org/10.1016/j.breastdis.2015.07.032.
Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018;9(1):160. https://doi.org/10.21037/jgo.2018.01.17.
Kircher SM, Nimeiri HS, Benson AB III. Targeting angiogenesis in colorectal cancer: tyrosine kinase inhibitors. Cancer J. 2016;22(3):182–9. https://doi.org/10.1097/ppo.0000000000000192.
Dasineh S, Akbarian M, Ebrahimi HA, Behbudi G. Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: preparation, optimization and physicochemical characterization. Appl Nanosci. 2021;11:1169–81. https://doi.org/10.1007/s13204-021-01744-4.
Ebrahimi HA, Javadzadeh Y, Hamidi M, BarzegarJalali M. Development and characterization of a novel lipohydrogel nanocarrier: repaglinide as a lipophilic model drug. J Pharm Pharmacol. 2016;68(4):450–8. https://doi.org/10.1111/jphp.12537.
Fasili Z, Mehri F, Ebrahimi HA, Jamali Z, Mohammad Khanlou E, Kahrizi F, Salimi A. Applying nanoparticles in the treatment of viral infections and toxicological considerations. Pharm Biomed Res. 2019;5(4):1–20. https://doi.org/10.18502/pbr.v5i4.2392.
Willenbacher E, Khan SZ, Mujica SCA, Trapani D, Hussain S, Wolf D, et al. Curcumin: new insights into an ancient ingredient against cancer. Int J Mol Sci. 2019;20(8):1808. https://doi.org/10.3390/ijms20081808.
Bachmeier BE, Killian PH, Melchart D. The role of curcumin in prevention and management of metastatic disease. Int J Mol Sci. 2018;19(6):1716. https://doi.org/10.3390/ijms19061716.
Gonçalves PB, Romeiro NC. Multi-target natural products as alternatives against oxidative stress in chronic obstructive pulmonary disease (COPD). Eur J Med Chem. 2019;163:911–31. https://doi.org/10.1016/j.ejmech.2018.12.020.
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: therapeutic updates and future prospects. Food Chem Toxicol. 2019;124:182–91. https://doi.org/10.1016/j.fct.2018.12.002.
Chen C-Y, Kao C-L, Liu C-M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci. 2018;19(9):2729. https://doi.org/10.3390/ijms19092729.
Jankun J, Wyganowska-Świątkowska M, Dettlaff K, Jelińska A, Surdacka A, Wątróbska-Świetlikowska D, Skrzypczak-Jankun E. Determining whether curcumin degradation/condensation is actually bioactivation. Int J Mol Med. 2016;37(5):1151–8. https://doi.org/10.3892/ijmm.2016.2524.
Mirzaei H, Masoudifar A, Sahebkar A, Zare N, Sadri Nahand J, Rashidi B, et al. MicroRNA: a novel target of curcumin in cancer therapy. J Cell Physiol. 2018;233(4):3004–15. https://doi.org/10.1002/jcp.26055.
Bahrami A, Amerizadeh F, ShahidSales S, Khazaei M, Ghayour-Mobarhan M, Sadeghnia HR, et al. Therapeutic potential of targeting Wnt/β-catenin pathway in treatment of colorectal cancer: rational and progress. J Cell Biochem. 2017;118(8):1979–83. https://doi.org/10.1002/jcb.25903.
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Investig. 2017;35(1):1–22. https://doi.org/10.1080/07357907.2016.1247166.
Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Kumar NVA, Martins N, Sharifi-Rad J. The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem. 2019;163:527–45. https://doi.org/10.1016/j.ejmech.2018.12.016.
Mundekkad D, Cho WC. Applications of curcumin and its nanoforms in the treatment of cancer. Pharmaceutics. 2023;15(9):2223. https://doi.org/10.3390/pharmaceutics15092223.
Victorelli FD, Manni LS, Biffi S, Bortot B, Buzzá HH, Lutz-Bueno V, et al. Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. J Colloid Interface Sci. 2022;620:419–30. https://doi.org/10.1016/j.jcis.2022.04.031.
Tabanelli R, Brogi S, Calderone V. Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics. 2021;13(10):1715. https://doi.org/10.3390/pharmaceutics13101715.
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The role of curcumin in cancer treatment. Biomedicines. 2021;9(9):1086. https://doi.org/10.5772/27874.
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and colorectal cancer: from basic to clinical evidences. Int J Mol Sci. 2020;21(7):2364. https://doi.org/10.3390/ijms21072364.
He Y-c, He L, Khoshaba R, Lu F-g, Cai C, Zhou F-l, et al. Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-mediated mechanism. Molecules. 2019;24(22):4179. https://doi.org/10.3390/molecules24224179.
Karthikeyan A, Senthil N, Min T. Nanocurcumin: a promising candidate for therapeutic applications. Front Pharmacol. 2020;11: 529594. https://doi.org/10.3389/fphar.2020.00487.
Weng W, Goel A. Curcumin and colorectal cancer: an update and current perspective on this natural medicine. Semin Cancer Biol. 2022;80:73–86. https://doi.org/10.1016/j.semcancer.2020.02.011.
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers. 2023;15(7):1596. https://doi.org/10.3390/polym15071596.
Sukumaran S, Neelakandan M, Shaji N, Prasad P, Yadunath V. Magnetic nanoparticles: synthesis and potential biological applications. JSM Nanotechnol Nanomed. 2018;6(2):1068.
Chen Y-T, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing using magnetic particle detection techniques. Sensors. 2017;17(10):2300. https://doi.org/10.3390/s17102300.
Ganapathe LS, Mohamed MA, Mohamad Yunus R, Berhanuddin DD. Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. Magnetochemistry. 2020;6(4):68. https://doi.org/10.3390/magnetochemistry6040068.
Chen Y, Ding X, Zhang Y, Natalia A, Sun X, Wang Z, Shao H. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg. 2018;8(9):957. https://doi.org/10.21037/qims.2018.10.07.
Noqta OA, Aziz AA, Usman IA, Bououdina M. Recent advances in iron oxide nanoparticles (IONPs): synthesis and surface modification for biomedical applications. J Supercond Novel Magn. 2019;32:779–95. https://doi.org/10.1007/s10948-018-4939-6.
Amani A, Alizadeh MR, Yaghoubi H, Ebrahimi HA. Design and fabrication of novel multi-targeted magnetic nanoparticles for gene delivery to breast cancer cells. J Drug Deliv Sci Technol. 2021;61: 102151. https://doi.org/10.1016/j.jddst.2020.102151.
Nasab SH, Amani A, Ebrahimi HA, Hamidi AA. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel. J Pharm Anal. 2021;11(2):163–73. https://doi.org/10.22541/au.157541388.85913601.
Nurazzi N, Harussani M, Zulaikha NS, Norhana A, Syakir MI, Norli A. Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors—an overview. Polimery. 2021;66(2):85–97. https://doi.org/10.14314/polimery.2021.2.1.
Ali SSS, Razman MR, Awang A. The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. Int J Energy Econ Policy. 2020;10(3):84–9. https://doi.org/10.32479/ijeep.8987.
Feghali E, Tauk L, Ortiz P, Vanbroekhoven K, Eevers W. Catalytic chemical recycling of biodegradable polyesters. Polym Degrad Stab. 2020;179: 109241. https://doi.org/10.1016/j.polymdegradstab.2020.109241.
Amani A, Dustparast M, Noruzpour M, Zakaria RA, Ebrahimi HA. Design and invitro characterization of green synthesized magnetic nanoparticles conjugated with multitargeted poly lactic acid copolymers for co-delivery of siRNA and paclitaxel. Eur J Pharm Sci. 2021;167: 106007. https://doi.org/10.1016/j.ejps.2021.106007.
Maga D, Hiebel M, Aryan V. A comparative life cycle assessment of meat trays made of various packaging materials. Sustainability. 2019;11(19):5324. https://doi.org/10.3390/su11195324.
Chitaka TY, Russo V, von Blottnitz H. In pursuit of environmentally friendly straws: a comparative life cycle assessment of five straw material options in South Africa. Int J Life Cycle Assess. 2020;25:1818–32. https://doi.org/10.1007/s11367-020-01786-w.
Hajleh A, Al-Samydai A, Al-Dujaili EA. Nano, micro particulate and cosmetic delivery systems of polylactic acid: a mini review. J Cosmet Dermatol. 2020;19(11):2805–11. https://doi.org/10.1111/jocd.13696.
Kesharwani P, Chadar R, Sheikh A. CD44-targeted nanocarrier for cancer therapy. Front Pharmacol. 2022;12: 800481. https://doi.org/10.3389/fphar.2021.800481.
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45. https://doi.org/10.1038/nrm1004.
Rao NV, Yoon HY, Han HS, Ko H, Son S, Lee M, et al. Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opin Drug Deliv. 2016;13(2):239–52. https://doi.org/10.1517/17425247.2016.1112374.
Warthen J Jr, Stokes J, Jacobson M, Kozempel M. Estimation of azadirachtin content in neem extracts and formulations. J Liq Chromatogr. 1984;7(3):591–8. https://doi.org/10.1080/01483918408073988.
Shete P, Patil R, Tiwale B, Pawar S. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater. 2015;377:406–10. https://doi.org/10.1016/j.jmmm.2014.10.137.
Bourang S, Noruzpour M, Azizi S, Yaghoubi H, Ebrahimi HA. Synthesis and in vitro characterization of PCL-PEG-HA/FeCo magnetic nanoparticles encapsulating curcumin and 5-FU. Nanomed J. 2024. https://doi.org/10.22038/nmj.2024.76219.1857.
Trang NTT, Chinh NT, Giang NV, Thanh DTM, Lam TD, Thu LV, et al. Hydrolysis of green nanocomposites of poly (lactic acid)(PLA), chitosan (CS) and polyethylene glycol (PEG) in acid solution. Green Process Synthesis. 2016;5(5):443–9. https://doi.org/10.1515/nano.0015.2016-0060.
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnol. 2021;19:1–21. https://doi.org/10.1186/s12951-021-00770-2.
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22(1):169. https://doi.org/10.1186/s12943-023-01865-0.
Shieh M-J, Peng C-L, Lou P-J, Chiu C-H, Tsai T-Y, Hsu C-Y, et al. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J Control Release. 2008;129(3):200–6. https://doi.org/10.1016/j.jconrel.2008.03.024.
Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–9.
Alam N, Koul M, Mintoo MJ, Khare V, Gupta R, Rawat N, et al. Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor. Biomed Pharmacother. 2017;95:856–64. https://doi.org/10.1016/j.biopha.2017.08.108.
Bami MS, Estabragh MAR, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: brief history, properties, synthesis, mechanism and application. J Drug Deliv Sci Technol. 2022;70: 102987. https://doi.org/10.1016/j.jddst.2021.102987.
Mahdian M, Asrari SA, Ahmadi M, Madrakian T, Jalal NR, Afkhami A, et al. Dual stimuli-responsive gelatin-based hydrogel for pH and temperature-sensitive delivery of curcumin anticancer drug. J Drug Deliv Sci Technol. 2023;84: 104537. https://doi.org/10.1016/j.jddst.2023.104537.
Nabavinia M, Beltran-Huarac J. Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl Bio Mater. 2020;3(12):8172–87. https://doi.org/10.1021/acsabm.0c00947.
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent advances in the development of magnetic nanoparticles for biomedical applications. J Nanosci Nanotechnol. 2021;21(5):2705–41.
Yu Q, Sun J, Zhu X, Qiu L, Xu M, Liu S, et al. Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J Mater Chem B. 2017;5(30):6081–96. https://doi.org/10.1039/c7tb01035d.
Amani A, Begdelo JM, Yaghoubi H, Motallebinia S. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J Drug Deliv Sci Technol. 2019;49:534–46. https://doi.org/10.1016/j.jddst.2018.12.034.