PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo ?

Current Opinion in Genetics & Development - Tập 44 - Trang 47-53 - 2017
Alexander J Whitworth1, Leo J Pallanck2
1MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
2Department of Genome Sciences, University of Washington, Seattle, WA, United States

Tài liệu tham khảo

Harman, 1972, The biologic clock: the mitochondria?, J Am Geriatr Soc, 20, 145, 10.1111/j.1532-5415.1972.tb00787.x Schon, 2011, Mitochondria: the next (neurode)generation, Neuron, 70, 1033, 10.1016/j.neuron.2011.06.003 Wallace, 2005, A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine, Annu Rev Genet, 39, 359, 10.1146/annurev.genet.39.110304.095751 Matsuda, 2010, PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, J Cell Biol, 189, 211, 10.1083/jcb.200910140 Narendra, 2010, PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, 8, e1000298, 10.1371/journal.pbio.1000298 Kane, 2014, PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity, J Cell Biol, 205, 143, 10.1083/jcb.201402104 Kazlauskaite, 2014, Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65, Biochem J, 460, 127, 10.1042/BJ20140334 Koyano, 2014, Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, 510, 162, 10.1038/nature13392 Narendra, 2008, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J Cell Biol, 183, 795, 10.1083/jcb.200809125 Kondapalli, 2012, PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biol, 2, 120080, 10.1098/rsob.120080 Chan, 2011, Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy, Hum Mol Genet, 20, 1726, 10.1093/hmg/ddr048 Ordureau, 2014, Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis, Mol Cell, 56, 360, 10.1016/j.molcel.2014.09.007 Pickrell, 2015, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease, Neuron, 85, 257, 10.1016/j.neuron.2014.12.007 Yamano, 2016, The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation, EMBO Rep, 17, 300, 10.15252/embr.201541486 Schapira, 1989, Mitochondrial complex I deficiency in Parkinson’s disease, Lancet, 1, 1269, 10.1016/S0140-6736(89)92366-0 Exner, 2012, Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences, EMBO J, 31, 3038, 10.1038/emboj.2012.170 Bender, 2006, High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nat Genet, 38, 515, 10.1038/ng1769 Kraytsberg, 2006, Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons, Nat Genet, 38, 518, 10.1038/ng1778 Dias, 2013, The role of oxidative stress in Parkinson’s disease, J Parkinsons Dis, 3, 461, 10.3233/JPD-130230 Haque, 2008, Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP, Proc Natl Acad Sci U S A, 105, 1716, 10.1073/pnas.0705363105 Paterna, 2007, DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice, Mol Ther, 15, 698, 10.1038/sj.mt.6300067 Rosen, 2006, Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells, J Biol Chem, 281, 12809, 10.1074/jbc.M512649200 Sulzer, 2013, Neuronal vulnerability, pathogenesis, and Parkinson’s disease, Mov Disord, 28, 41, 10.1002/mds.25095 Berezhnov, 2016, Intracellular pH modulates autophagy and mitophagy, J Biol Chem, 291, 8701, 10.1074/jbc.M115.691774 MacVicar, 2014, Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation, J Cell Sci, 127, 2313, 10.1242/jcs.144337 Sterky, 2011, Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo, Proc Natl Acad Sci U S A, 108, 12937, 10.1073/pnas.1103295108 Van Laar, 2011, Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization, Hum Mol Genet, 20, 927, 10.1093/hmg/ddq531 Cai, 2012, Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons, Curr Biol, 22, 545, 10.1016/j.cub.2012.02.005 Ashrafi, 2014, Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin, J Cell Biol, 206, 655, 10.1083/jcb.201401070 Lazarou, 2015, The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy, Nature, 524, 309, 10.1038/nature14893 Twig, 2008, Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J, 27, 433, 10.1038/sj.emboj.7601963 Guzman, 2010, Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1, Nature, 468, 696, 10.1038/nature09536 Jin, 2013, The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria, Autophagy, 9, 1750, 10.4161/auto.26122 Pimenta de Castro, 2012, Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster, Cell Death Differ, 19, 1308, 10.1038/cdd.2012.5 Greene, 2003, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc Natl Acad Sci U S A, 100, 4078, 10.1073/pnas.0737556100 Clark, 2006, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 441, 1162, 10.1038/nature04779 Park, 2006, Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, 441, 1157, 10.1038/nature04788 Vincow, 2013, The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo, Proc Natl Acad Sci U S A, 110, 6400, 10.1073/pnas.1221132110 Poole, 2008, The PINK1/Parkin pathway regulates mitochondrial morphology, Proc Natl Acad Sci U S A, 105, 1638, 10.1073/pnas.0709336105 Riparbelli, 2007, The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis, Dev Biol, 303, 108, 10.1016/j.ydbio.2006.10.038 Shin, 2011, PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease, Cell, 144, 689, 10.1016/j.cell.2011.02.010 Stevens, 2015, Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration, Proc Natl Acad Sci U S A, 112, 11696, 10.1073/pnas.1500624112 Allen, 2013, Loss of iron triggers PINK1/Parkin-independent mitophagy, EMBO Rep, 14, 1127, 10.1038/embor.2013.168 Kageyama, 2014, Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain, EMBO J, 33, 2798, 10.15252/embj.201488658 Szargel, 2016, The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway, Hum Mol Genet, 25, 3476, 10.1093/hmg/ddw189 Kujoth, 2005, Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging, Science, 309, 481, 10.1126/science.1112125 Trifunovic, 2004, Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature, 429, 417, 10.1038/nature02517 Pickrell, 2015, Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress, Neuron, 87, 371, 10.1016/j.neuron.2015.06.034 Schulz, 2015, UPR(mt)-mediated cytoprotection and organismal aging, Biochim Biophys Acta, 1847, 1448, 10.1016/j.bbabio.2015.03.008 Neuspiel, 2008, Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers, Curr Biol, 18, 102, 10.1016/j.cub.2007.12.038 Soubannier, 2009, Positioning mitochondrial plasticity within cellular signaling cascades, Biochim Biophys Acta, 1793, 154, 10.1016/j.bbamcr.2008.07.008 Sugiura, 2014, A new pathway for mitochondrial quality control: mitochondrial-derived vesicles, EMBO J, 33, 2142, 10.15252/embj.201488104 Soubannier, 2012, A vesicular transport pathway shuttles cargo from mitochondria to lysosomes, Curr Biol, 22, 135, 10.1016/j.cub.2011.11.057 McLelland, 2014, Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control, EMBO J, 33, 282 Wang, 2016, Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes, Nat Med, 22, 54, 10.1038/nm.3983 Braschi, 2010, Vps35 mediates vesicle transport between the mitochondria and peroxisomes, Curr Biol, 20, 1310, 10.1016/j.cub.2010.05.066 Malik, 2015, VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin, Hum Mol Genet, 24, 6106, 10.1093/hmg/ddv322 McWilliams, 2016, mito-QC illuminates mitophagy and mitochondrial architecture in vivo, J Cell Biol, 214, 333, 10.1083/jcb.201603039 Sun, 2015, Measuring in vivo mitophagy, Mol Cell, 60, 685, 10.1016/j.molcel.2015.10.009