PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo ?
Tài liệu tham khảo
Harman, 1972, The biologic clock: the mitochondria?, J Am Geriatr Soc, 20, 145, 10.1111/j.1532-5415.1972.tb00787.x
Schon, 2011, Mitochondria: the next (neurode)generation, Neuron, 70, 1033, 10.1016/j.neuron.2011.06.003
Wallace, 2005, A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine, Annu Rev Genet, 39, 359, 10.1146/annurev.genet.39.110304.095751
Matsuda, 2010, PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, J Cell Biol, 189, 211, 10.1083/jcb.200910140
Narendra, 2010, PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, 8, e1000298, 10.1371/journal.pbio.1000298
Kane, 2014, PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity, J Cell Biol, 205, 143, 10.1083/jcb.201402104
Kazlauskaite, 2014, Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65, Biochem J, 460, 127, 10.1042/BJ20140334
Koyano, 2014, Ubiquitin is phosphorylated by PINK1 to activate parkin, Nature, 510, 162, 10.1038/nature13392
Narendra, 2008, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J Cell Biol, 183, 795, 10.1083/jcb.200809125
Kondapalli, 2012, PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biol, 2, 120080, 10.1098/rsob.120080
Chan, 2011, Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy, Hum Mol Genet, 20, 1726, 10.1093/hmg/ddr048
Ordureau, 2014, Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis, Mol Cell, 56, 360, 10.1016/j.molcel.2014.09.007
Pickrell, 2015, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease, Neuron, 85, 257, 10.1016/j.neuron.2014.12.007
Yamano, 2016, The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation, EMBO Rep, 17, 300, 10.15252/embr.201541486
Schapira, 1989, Mitochondrial complex I deficiency in Parkinson’s disease, Lancet, 1, 1269, 10.1016/S0140-6736(89)92366-0
Exner, 2012, Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences, EMBO J, 31, 3038, 10.1038/emboj.2012.170
Bender, 2006, High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nat Genet, 38, 515, 10.1038/ng1769
Kraytsberg, 2006, Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons, Nat Genet, 38, 518, 10.1038/ng1778
Dias, 2013, The role of oxidative stress in Parkinson’s disease, J Parkinsons Dis, 3, 461, 10.3233/JPD-130230
Haque, 2008, Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP, Proc Natl Acad Sci U S A, 105, 1716, 10.1073/pnas.0705363105
Paterna, 2007, DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice, Mol Ther, 15, 698, 10.1038/sj.mt.6300067
Rosen, 2006, Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells, J Biol Chem, 281, 12809, 10.1074/jbc.M512649200
Sulzer, 2013, Neuronal vulnerability, pathogenesis, and Parkinson’s disease, Mov Disord, 28, 41, 10.1002/mds.25095
Berezhnov, 2016, Intracellular pH modulates autophagy and mitophagy, J Biol Chem, 291, 8701, 10.1074/jbc.M115.691774
MacVicar, 2014, Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation, J Cell Sci, 127, 2313, 10.1242/jcs.144337
Sterky, 2011, Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo, Proc Natl Acad Sci U S A, 108, 12937, 10.1073/pnas.1103295108
Van Laar, 2011, Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization, Hum Mol Genet, 20, 927, 10.1093/hmg/ddq531
Cai, 2012, Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons, Curr Biol, 22, 545, 10.1016/j.cub.2012.02.005
Ashrafi, 2014, Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin, J Cell Biol, 206, 655, 10.1083/jcb.201401070
Lazarou, 2015, The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy, Nature, 524, 309, 10.1038/nature14893
Twig, 2008, Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J, 27, 433, 10.1038/sj.emboj.7601963
Guzman, 2010, Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1, Nature, 468, 696, 10.1038/nature09536
Jin, 2013, The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria, Autophagy, 9, 1750, 10.4161/auto.26122
Pimenta de Castro, 2012, Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster, Cell Death Differ, 19, 1308, 10.1038/cdd.2012.5
Greene, 2003, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc Natl Acad Sci U S A, 100, 4078, 10.1073/pnas.0737556100
Clark, 2006, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 441, 1162, 10.1038/nature04779
Park, 2006, Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, 441, 1157, 10.1038/nature04788
Vincow, 2013, The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo, Proc Natl Acad Sci U S A, 110, 6400, 10.1073/pnas.1221132110
Poole, 2008, The PINK1/Parkin pathway regulates mitochondrial morphology, Proc Natl Acad Sci U S A, 105, 1638, 10.1073/pnas.0709336105
Riparbelli, 2007, The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis, Dev Biol, 303, 108, 10.1016/j.ydbio.2006.10.038
Shin, 2011, PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease, Cell, 144, 689, 10.1016/j.cell.2011.02.010
Stevens, 2015, Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration, Proc Natl Acad Sci U S A, 112, 11696, 10.1073/pnas.1500624112
Allen, 2013, Loss of iron triggers PINK1/Parkin-independent mitophagy, EMBO Rep, 14, 1127, 10.1038/embor.2013.168
Kageyama, 2014, Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain, EMBO J, 33, 2798, 10.15252/embj.201488658
Szargel, 2016, The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway, Hum Mol Genet, 25, 3476, 10.1093/hmg/ddw189
Kujoth, 2005, Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging, Science, 309, 481, 10.1126/science.1112125
Trifunovic, 2004, Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature, 429, 417, 10.1038/nature02517
Pickrell, 2015, Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress, Neuron, 87, 371, 10.1016/j.neuron.2015.06.034
Schulz, 2015, UPR(mt)-mediated cytoprotection and organismal aging, Biochim Biophys Acta, 1847, 1448, 10.1016/j.bbabio.2015.03.008
Neuspiel, 2008, Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers, Curr Biol, 18, 102, 10.1016/j.cub.2007.12.038
Soubannier, 2009, Positioning mitochondrial plasticity within cellular signaling cascades, Biochim Biophys Acta, 1793, 154, 10.1016/j.bbamcr.2008.07.008
Sugiura, 2014, A new pathway for mitochondrial quality control: mitochondrial-derived vesicles, EMBO J, 33, 2142, 10.15252/embj.201488104
Soubannier, 2012, A vesicular transport pathway shuttles cargo from mitochondria to lysosomes, Curr Biol, 22, 135, 10.1016/j.cub.2011.11.057
McLelland, 2014, Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control, EMBO J, 33, 282
Wang, 2016, Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes, Nat Med, 22, 54, 10.1038/nm.3983
Braschi, 2010, Vps35 mediates vesicle transport between the mitochondria and peroxisomes, Curr Biol, 20, 1310, 10.1016/j.cub.2010.05.066
Malik, 2015, VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin, Hum Mol Genet, 24, 6106, 10.1093/hmg/ddv322
McWilliams, 2016, mito-QC illuminates mitophagy and mitochondrial architecture in vivo, J Cell Biol, 214, 333, 10.1083/jcb.201603039
Sun, 2015, Measuring in vivo mitophagy, Mol Cell, 60, 685, 10.1016/j.molcel.2015.10.009