PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death

Molecular Cell - Tập 33 - Trang 627-638 - 2009
Sonia Gandhi1,2, Alison Wood-Kaczmar1, Zhi Yao1, Helene Plun-Favreau1, Emma Deas1, Kristina Klupsch3, Julian Downward3, David S. Latchman2,4, Sarah J. Tabrizi5, Nicholas W. Wood1, Michael R. Duchen6, Andrey Y. Abramov1
1Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK
2Medical Molecular Biology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
3Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
4Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
5Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG, UK
6Department of Physiology, University College London, London, WC1E 6BT, UK

Tài liệu tham khảo

Abramov, 2003, Actions of ionomycin, 4-BrA23187 and a novel electrogenic Ca2+ ionophore on mitochondria in intact cells, Cell Calcium, 33, 101, 10.1016/S0143-4160(02)00203-8 Abramov, 2003, Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity, J. Neurosci., 23, 5088, 10.1523/JNEUROSCI.23-12-05088.2003 Abramov, 2004, Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase, J. Neurosci., 24, 565, 10.1523/JNEUROSCI.4042-03.2004 Abramov, 2005, Expression and modulation of an NADPH oxidase in mammalian astrocytes, J. Neurosci., 25, 9176, 10.1523/JNEUROSCI.1632-05.2005 Abramov, 2007, Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death, Proc. Natl. Acad. Sci. USA, 104, 18091, 10.1073/pnas.0708959104 Anantharam, 2007, Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells, Neurotoxicology, 28, 988, 10.1016/j.neuro.2007.08.008 Andersen, 2004, Oxidative stress in neurodegeneration: cause or consequence?, Nat. Med., 10, S18, 10.1038/nrn1434 Batandier, 2004, Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I, J. Biol. Chem., 279, 17197, 10.1074/jbc.M310329200 Betarbet, 2000, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci., 3, 1301, 10.1038/81834 Braak, 2003, Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol. Aging, 24, 197, 10.1016/S0197-4580(02)00065-9 Campanella, 2008, Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1, Cell Metab., 8, 13, 10.1016/j.cmet.2008.06.001 Carafoli, 1974, The release of calcium from heart mitochondria by sodium, J. Mol. Cell. Cardiol., 6, 361, 10.1016/0022-2828(74)90077-7 Chan, 2007, ‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease, Nature, 447, 1081, 10.1038/nature05865 Crompton, 1999, The mitochondrial permeability transition pore and its role in cell death, Biochem. J., 341, 233, 10.1042/0264-6021:3410233 Crompton, 1977, The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier, Eur. J. Biochem., 79, 549, 10.1111/j.1432-1033.1977.tb11839.x Crompton, 1978, The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues, Eur. J. Biochem., 82, 25, 10.1111/j.1432-1033.1978.tb11993.x Damier, 1999, The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease, Brain, 122, 1437, 10.1093/brain/122.8.1437 Di Lisa, 2001, Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart, J. Biol. Chem., 276, 2571, 10.1074/jbc.M006825200 Duchen, 2003, Imaging mitochondrial function in intact cells, Methods Enzymol., 361, 353, 10.1016/S0076-6879(03)61019-0 Exner, 2007, Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin, J. Neurosci., 27, 12413, 10.1523/JNEUROSCI.0719-07.2007 Fontaine, 1998, A ubiquinone-binding site regulates the mitochondrial permeability transition pore, J. Biol. Chem., 273, 25734, 10.1074/jbc.273.40.25734 Forno, 1986, Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys, Ann. Neurol., 20, 449, 10.1002/ana.410200403 Gandhi, 2006, PINK1 protein in normal human brain and Parkinson's disease, Brain, 129, 1720, 10.1093/brain/awl114 Haque, 2008, Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP, Proc. Natl. Acad. Sci. USA, 105, 1716, 10.1073/pnas.0705363105 Jornot, 1999, Reactive oxygen metabolites increase mitochondrial calcium in endothelial cells: implication of the Ca2+/Na+ exchanger, J. Cell Sci., 112, 1013, 10.1242/jcs.112.7.1013 Keelan, 1999, Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons, J. Physiol., 520, 797, 10.1111/j.1469-7793.1999.00797.x Kitada, 2007, Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice, Proc. Natl. Acad. Sci. USA, 104, 11441, 10.1073/pnas.0702717104 Li, 1992, Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria, J. Biol. Chem., 267, 17983, 10.1016/S0021-9258(19)37140-6 Liang, 1996, Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration, Neurodegeneration, 5, 313, 10.1006/neur.1996.0042 Mattson, 2007, Calcium and neurodegeneration, Aging Cell, 6, 337, 10.1111/j.1474-9726.2007.00275.x Muqit, 2006, Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress, J. Neurochem., 98, 156, 10.1111/j.1471-4159.2006.03845.x Murphy, 1996, Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria, Proc. Natl. Acad. Sci. USA, 93, 9893, 10.1073/pnas.93.18.9893 Nicholls, 2000, Mitochondria and neuronal survival, Physiol. Rev., 80, 315, 10.1152/physrev.2000.80.1.315 Plun-Favreau, 2007, The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1, Nat. Cell Biol., 9, 1243, 10.1038/ncb1644 Pridgeon, 2007, PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1, PLoS Biol., 5, e172, 10.1371/journal.pbio.0050172 Schapira, 1990, Mitochondrial complex I deficiency in Parkinson's disease, J. Neurochem., 54, 823, 10.1111/j.1471-4159.1990.tb02325.x Scheele, 2007, Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration?, FASEB J., 21, 3653, 10.1096/fj.07-8520com Silvestri, 2005, Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism, Hum. Mol. Genet., 14, 3477, 10.1093/hmg/ddi377 Szabadkai, 2006, Mitochondrial dynamics and Ca2+ signaling, Biochim. Biophys. Acta, 1763, 442, 10.1016/j.bbamcr.2006.04.002 Valente, 2004, Hereditary early-onset Parkinson's disease caused by mutations in PINK1, Science, 304, 1158, 10.1126/science.1096284 Wood-Kaczmar, 2008, PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons, PLoS ONE, 3, e2455, 10.1371/journal.pone.0002455 Yang, 2006, Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin, Proc. Natl. Acad. Sci. USA, 103, 10793, 10.1073/pnas.0602493103