PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects

Springer Science and Business Media LLC - Tập 1 - Trang 1-19 - 2022
Tongzhou Wang1,2, Xuejie Cao1,2, Lifang Jiao1,2
1Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, China
2Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China

Tóm tắt

Hydrogen, as a clean energy carrier, is of great potential to be an alternative fuel in the future. Proton exchange membrane (PEM) water electrolysis is hailed as the most desired technology for high purity hydrogen production and self-consistent with volatility of renewable energies, has ignited much attention in the past decades based on the high current density, greater energy efficiency, small mass-volume characteristic, easy handling and maintenance. To date, substantial efforts have been devoted to the development of advanced electrocatalysts to improve electrolytic efficiency and reduce the cost of PEM electrolyser. In this review, we firstly compare the alkaline water electrolysis (AWE), solid oxide electrolysis (SOE), and PEM water electrolysis and highlight the advantages of PEM water electrolysis. Furthermore, we summarize the recent progress in PEM water electrolysis including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts in the acidic electrolyte. We also introduce other PEM cell components (including membrane electrode assembly, current collector, and bipolar plate). Finally, the current challenges and an outlook for the future development of PEM water electrolysis technology for application in future hydrogen production are provided.

Tài liệu tham khảo

Zhu J, Hu LS, Zhao PX, Lee LYS, Wong K-Y (2020) Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem Rev 120:851–918 Li L, Wang P, Shao Q, Huang X (2020) Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev 49:3072–3106 Wang T, Cao X, Jiao L (2021) MOFs-Derived Carbon-Based Metal Catalysts for Energy-Related Electrocatalysis. Small 17:2004398 Tian X, Zhao P, Sheng W (2019) Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances. Adv Mater 31:1808066 Chi J, Yu H (2018) Water electrolysis based on renewable energy for hydrogen production. Chinese J Catal 39:390–394 Yang L, Qin H, Dong Z, Wang T, Wang G, Jiao L (2021) Metallic S-CoTe with Surface Reconstruction Activated by Electrochemical Oxidation for Oxygen Evolution Catalysis. Small 17:2102027 Zhang H, Maijenburg AW, Li X, Schweizer SL, Wehrspohn RB (2020) Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Adv Funct Mater 30:2003261 Cao X, Wang T, Jiao L (2021) Transition-Metal (Fe Co, and Ni)-Based Nanofiber Electrocatalysts for Water Splitting. Adv Fiber Mater 3:210–228 Peng Y, Lu B, Chen S (2018) Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Adv Mater 30:1801995 Guo X, Wan X, Liu Q, Li Y, Li W, Shui J (2022) Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience https://doi.org/10.1016/j.esci.2022.04.002 Prieto G, Tuysuz H, Duyckaerts N, Knossalla J, Wang GH, Schuth F (2016) Hollow Nano- and Microstructures as Catalysts. Chem Rev 116:14056–14119 Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2007) Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis. Energy 32:431–436 Lewinski KA, van der Vliet DF, Luopa SM (2015) NSTF Advances for PEM Electrolysis-The Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers. ECS Trans 69:893–917 Shiva Kumar S, Himabindu V (2019) Hydrogen production by PEM water electrolysis – A review. Mater Sci Energy Technol 2:442–454 Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934 Bi L, Boulfrad S, Traversa E (2014) Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev 43:8255–8270 Xu W, Scott K (2010) The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. Int J Hydrogen Energy 35:12029–12037 Siracusano S, Baglio V, Lufrano F, Staiti P, Aricò AS (2013) Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. J Membr Sci 448:209–214 Eiler K, Suriñach S, Sort J, Pellicer E (2020) Mesoporous Ni-rich Ni–Pt thin films: Electrodeposition, characterization and performance toward hydrogen evolution reaction in acidic media. Appl Catal, B Environ. 265:118597 Ayers KE, Renner JN, Danilovic N, Wang JX, Zhang Y, Maric R, Yu H (2016) Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catal Today 262:121–132 Zhong W, Tu W, Wang Z, Lin Z, Xu A, Ye X, Chen D, Xiao B (2020) Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. J Energy Chem 51:280–284 Xu J, Zhang C, Liu H, Sun J, Xie R, Qiu Y, Lü F, Liu Y, Zhuo L, Liu X, Luo J (2020) Amorphous MoOx-Stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 70:104529 Ramakrishna SUB, Srinivasulu Reddy D, Shiva Kumar S, Himabindu V (2016) Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. Int J Hydrogen Energy 41:20447–20454 Morozan A, Johnson H, Roiron C, Genay G, Aldakov D, Ghedjatti A, Nguyen CT, Tran PD, Kinge S, Artero V (2020) Nonprecious Bimetallic Iron-Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution Reaction in Proton Exchange Membrane Electrolyzers. ACS Catal 10:14336–14348 Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J Am Chem Soc 127:5308–5309 Yang C, Zhao R, Xiang H, Wu J, Zhong W, Li W, Zhang Q, Yang N, Li X (2020) Ni-Activated Transition Metal Carbides for Efficient Hydrogen Evolution in Acidic and Alkaline Solutions. Adv Energy Mater 10:2002260 Hu K, Ohto T, Nagata Y, Wakisaka M, Aoki Y, Fujita JI, Ito Y (2021) Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nat Commun 12:203 Yoo S, Kim Y, Yoon Y, Karuppannan M, Kwon OJ, Lim T (2021) Encapsulation of Pt nanocatalyst with N-containing carbon layer for improving catalytic activity and stability in the hydrogen evolution reaction. Int J Hydrogen Energy 46:21454–21461 Feng G, Ning F, Song J, Shang H, Zhang K, Ding Z, Gao P, Chu W, Xia D (2021) Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. J Am Chem Soc 143:17117–17127 Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv Mater 28:1917–1933 Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N (2017) Heterogeneous Nanostructure Based on 1T-Phase MoS2 for Enhanced Electrocatalytic Hydrogen Evolution. ACS Appl Mater Interfaces 9:25291–25297 Sun T, Wang J, Chi X, Lin Y, Chen Z, Ling X, Qiu C, Xu Y, Song L, Chen W, Su C (2018) Engineering the Electronic Structure of MoS2 Nanorods by N and Mn Dopants for Ultra-Efficient Hydrogen Production. ACS Catal 8:7585–7592 Zhao Z, Qin F, Kasiraju S, Xie L, Alam MK, Chen S, Wang D, Ren Z, Wang Z, Grabow LC, Bao J (2017) Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution. ACS Catal 7:7312–7318 Luo Y, Zhang S, Pan H, Xiao S, Guo Z, Tang L, Khan U, Ding BF, Li M, Cai Z, Zhao Y, Lv W, Feng Q, Zou X, Lin J, Cheng HM, Liu B (2020) Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution. ACS Nano 14:767–776 Cheng Y, Lu S, Liao F, Liu L, Li Y, Shao M (2017) Rh-MoS2 Nanocomposite Catalysts with Pt-Like Activity for Hydrogen Evolution Reaction. Adv Funct Mater 27:1700359 Zhang Z, Xu J, Wen Y, Wang T (2018) A highly-sensitive VB2 electrochemical sensor based on one-step co-electrodeposited molecularly imprinted WS2-PEDOT film supported on graphene oxide-SWCNTs nanocomposite. Mater Sci Eng C 92:77–87 Deng S, Yang F, Zhang Q, Zhong Y, Zeng Y, Lin S, Wang X, Lu X, Wang CZ, Gu L, Xia X, Tu J (2018) Phase Modulation of (1T–2H)-MoSe2/TiC-C Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction. Adv Mater 30:1802223 Zhang C, Chen X, Peng Z, Fu X, Lian L, Luo W, Zhang J, Li H, Wang Y, Zhang D (2018) Phosphine-free synthesis and shape evolution of MoSe2 nanoflowers for electrocatalytic hydrogen evolution reactions. CrystEngComm 20:2491–2498 Chen W, Qiao R, Song C, Zhao L, Jiang Z-J, Maiyalagan T, Jiang Z (2020) Tailoring the thickness of MoSe2 layer of the hierarchical double-shelled N-doped carbon@MoSe2 hollow nanoboxes for efficient and stable hydrogen evolution reaction. J Catal 381:363–373 Tsai C, Chan K, Abild-Pedersen F, Norskov JK (2014) Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16:13156–13164 Kim JH, Kim H, Kim J, Lee HJ, Jang JH, Ahn SH (2018) Electrodeposited molybdenum sulfide as a cathode for proton exchange membrane water electrolyzer. J Power Sources 392:69–78 Wang T, Liu C, Wang X, Li X, Jiang F, Li C, Hou J, Xu J (2017) Highly enhanced thermoelectric performance of WS2 nanosheets upon embedding PEDOT:PSS. J Polym Sci B Polym Phys 55:997–1004 Wang T, Liu C, Xu J, Zhu Z, Liu E, Hu Y, Li C, Jiang F (2016) Thermoelectric performance of restacked MoS2 nanosheets thin-film. Nanotechnology 27:285703 Wang T, Liu C, Jiang F, Xu Z, Wang X, Li X, Li C, Xu J, Yang X (2017) Solution-processed two-dimensional layered heterostructure thin-film with optimized thermoelectric performance. Phys Chem Chem Phys 19:17560–17567 Kwon IS, Kwak IH, Debela TT, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS (2021) Phase-Transition Mo1-xVxSe2 Alloy Nanosheets with Rich V-Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. ACS Nano 15:14672–14682 Zhang B, Wang J, Liu J, Zhang L, Wan H, Miao L, Jiang J (2019) Dual-Descriptor Tailoring: The Hydroxyl Adsorption Energy-Dependent Hydrogen Evolution Kinetics of High-Valance State Doped Ni3N in Alkaline Media. ACS Catal 9:9332–9338 Wang T, Cao X, Qin H, Chen X, Li J, Jiao L (2021) Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays. J Mater Chem A 9:21094–21100 Zhao Y, Hwang J, Tang MT, Chun H, Wang X, Zhao H, Chan K, Han B, Gao P, Li H (2020) Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. J Power Sources 456:227998 Gu X, Yang X, Feng L (2020) An Efficient RuTe2/Graphene Catalyst for Electrochemical Hydrogen Evolution Reaction in Acid Electrolyte. Chem Asian J 15:2886–2891 Sapountzi FM, Orlova ED, Sousa JPS, Salonen LM, Lebedev OI, Zafeiropoulos G, Tsampas MN, Niemantsverdriet HJW, Kolen’ko, Y. V. (2020) FeP Nanocatalyst with Preferential [010] Orientation Boosts the Hydrogen Evolution Reaction in Polymer-Electrolyte Membrane Electrolyzer. Energy Fuels 34:6423–6429 Shiva Kumar S, Himabindu V (2020) Boron-Doped Carbon nanoparticles supported palladium as an efficient hydrogen evolution electrode in PEM water electrolysis. Renewable Energy 146:2281–2290 Fu L, Zeng X, Huang C, Cai P, Cheng G, Luo W (2018) Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting. Inorg Chem Front 5:1121–1125 Xue Q, Gao W, Zhu J, Peng R, Xu Q, Chen P, Chen Y (2018) Carbon nanobowls supported ultrafine iridium nanocrystals: An active and stable electrocatalyst for the oxygen evolution reaction in acidic media. J Colloid Interface Sci 529:325–331 Luo F, Hu H, Zhao X, Yang Z, Zhang Q, Xu J, Kaneko T, Yoshida Y, Zhu C, Cai W (2020) Robust and Stable Acidic Overall Water Splitting on Ir Single Atoms. Nano Lett 20:2120–2128 Shan J, Ye C, Chen S, Sun T, Jiao Y, Liu L, Zhu C, Song L, Han Y, Jaroniec M, Zhu Y, Zheng Y, Qiao SZ (2021) Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. J Am Chem Soc 143:5201–5211 Pi Y, Zhang N, Guo S, Guo J, Huang X (2016) Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range. Nano Lett 16:4424–4430 Jiang B, Wang T, Cheng Y, Liao F, Wu K, Shao M (2018) Ir/g-C3N4/Nitrogen-Doped Graphene Nanocomposites as Bifunctional Electrocatalysts for Overall Water Splitting in Acidic Electrolytes. ACS Appl Mater Interfaces 10:39161–39167 Jiang B, Guo Y, Kim J, Whitten AE, Wood K, Kani K, Rowan AE, Henzie J, Yamauchi Y (2018) Mesoporous Metallic Iridium Nanosheets. J Am Chem Soc 140:12434–12441 Wu G, Zheng X, Cui P, Jiang H, Wang X, Qu Y, Chen W, Lin Y, Li H, Han X, Hu Y, Liu P, Zhang Q, Ge J, Yao Y, Sun R, Wu Y, Gu L, Hong X, Li Y (2019) A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 10:4855 Cao L, Luo Q, Chen J, Wang L, Lin Y, Wang H, Liu X, Shen X, Zhang W, Liu W, Qi Z, Jiang Z, Yang J, Yao T (2019) Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat Commun 10:4849 Yao Y, Hu S, Chen W, Huang Z-Q, Wei W, Yao T, Liu R, Zang K, Wang X, Wu G, Yuan W, Yuan T, Zhu B, Liu W, Li Z, He D, Xue Z, Wang Y, Zheng X, Dong J, Chang C-R, Chen Y, Hong X, Luo J, Wei S, Li W-X, Strasser P, Wu Y, Li Y (2019) Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal 2:304–313 Zhu J, Guo Y, Liu F, Xu H, Gong L, Shi W, Chen D, Wang P, Yang Y, Zhang C, Wu J, Luo J, Mu S (2021) Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. Angew Chem Int Ed 60:12328–12334 Zhao M, Chen Z, Lyu Z, Hood ZD, Xie M, Vara M, Chi M, Xia Y (2019) Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, 111 Facets, Thermal Stability up to 400 degrees C, and Enhanced Catalytic Activity. J Am Chem Soc 141:7028–7036 Wang Y, Zhang L, Yin K, Zhang J, Gao H, Liu N, Peng Z, Zhang Z (2019) Nanoporous Iridium-Based Alloy Nanowires as Highly Efficient Electrocatalysts Toward Acidic Oxygen Evolution Reaction. ACS Appl Mater Interfaces 11:39728–39736 Shi Q, Zhu C, Zhong H, Su D, Li N, Engelhard MH, Xia H, Zhang Q, Feng S, Beckman SP, Du D, Lin Y (2018) Nanovoid Incorporated IrxCu Metallic Aerogels for Oxygen Evolution Reaction Catalysis. ACS Energy Lett 3:2038–2044 Pi Y, Shao Q, Wang P, Guo J, Huang X (2017) General Formation of Monodisperse IrM (M = Ni Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting. Adv Funct Mater 27:1700886 Guo H, Fang Z, Li H, Fernandez D, Henkelman G, Humphrey SM, Yu G (2019) Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano 13:13225–13234 Xu J, Lian Z, Wei B, Li Y, Bondarchuk O, Zhang N, Yu Z, Araujo A, Amorim I, Wang Z, Li B, Liu L (2020) Strong Electronic Coupling between Ultrafine Iridium-Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media. ACS Catal 10:3571–3579 Shan J, Ling T, Davey K, Zheng Y, Qiao SZ (2019) Transition-Metal-Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Adv Mater 31:1900510 Zhu J, Xie M, Chen Z, Lyu Z, Chi M, Jin W, Xia Y (2020) Pt-Ir-Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Adv Energy Mater 10:1904114 Park J, Sa YJ, Baik H, Kwon T, Joo SH, Lee K (2017) Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction. ACS Nano 11:5500–5509 Kwon T, Hwang H, Sa YJ, Park J, Baik H, Joo SH, Lee K (2017) Cobalt Assisted Synthesis of IrCu Hollow Octahedral Nanocages as Highly Active Electrocatalysts toward Oxygen Evolution Reaction. Adv Funct Mater 27:1604688 Feng J, Lv F, Zhang W, Li P, Wang K, Yang C, Wang B, Yang Y, Zhou J, Lin F, Wang GC, Guo S (2017) Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis. Adv Mater 29:1703798 Wang Z, Zheng Z, Xue Y, He F, Li Y (2021) Acidic Water Oxidation on Quantum Dots of IrOx/Graphdiyne. Adv Energy Mater 11:2101138 Zhao F, Wen B, Niu W, Chen Z, Yan C, Selloni A, Tully CG, Yang X, Koel BE (2021) Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. J Am Chem Soc 143:15616–15623 Lin Y, Tian Z, Zhang L, Ma J, Jiang Z, Deibert BJ, Ge R, Chen L (2019) Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat Commun 10:162 Hao S, Liu M, Pan J, Liu X, Tan X, Xu N, He Y, Lei L, Zhang X (2020) Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat Commun 11:5368 Zhang L, Jang H, Liu H, Kim MG, Yang D, Liu S, Liu X, Cho J (2021) Sodium-Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst. Angew Chem Int Ed 60:18821–18829 Zhuang Z, Wang Y, Xu CQ, Liu S, Chen C, Peng Q, Zhuang Z, Xiao H, Pan Y, Lu S, Yu R, Cheong WC, Cao X, Wu K, Sun K, Wang Y, Wang D, Li J, Li Y (2019) Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat Commun 10:4875 Yang H, Liu Y, Liu X, Wang X, Tian H, Waterhouse G, Kruger P, Telfer S, Ma S (2022) Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2:227–234 Lin F, Dong Z, Yao Y, Yang L, Fang F, Jiao L (2020) Electrocatalytic Hydrogen Evolution of Ultrathin Co-Mo5N6 Heterojunction with Interfacial Electron Redistribution. Adv Energy Mater 10:2002176 Su H, Soldatov M, Roldugin V, Liu Q (2022) Platinum single-atom catalyst with self-adjustable valence state for largecurrent-density acidic water oxidation. eScience 2:102–109 Wang T, Cao X, Qin H, Shang L, Zheng S, Fang F, Jiao L (2021) P-Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew Chem Int Ed 60:21237–21241 Wang T, Wang Q, Wang Y, Da Y, Zhou W, Shao Y, Li D, Zhan S, Yuan J, Wang H (2019) Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angew Chem Int Ed 58:13466–13471 Velasco-Vélez JJ, Jones TE, Streibel V, Hävecker M, Chuang CH, Frevel L, Plodinec M, Centeno A, Zurutuza A, Wang R, Arrigo R, Mom R, Hofmann S, Schlögl R, Knop-Gericke A (2019) Electrochemically active Ir NPs on graphene for OER in acidic aqueous electrolyte investigated by in situ and ex situ spectroscopies. Surf Sci 681:1–8 Boshnakova I, Lefterova E, Slavcheva E (2018) Investigation of montmorillonite as carrier for OER. Int J Hydrogen Energy 43:16897–16904 Dong Z, Lin F, Yao Y, Jiao L (2019) Crystalline Ni(OH)2/Amorphous NiMoOx Mixed-Catalyst with Pt-Like Performance for Hydrogen Production. Adv Energy Mater 9:1902703 Gong Z, Liu R, Gong H, Ye G, Liu J, Dong J, Liao J, Yan M, Liu J, Huang K, Xing L, Liang J, He Y, Fei H (2021) Constructing a Graphene-Encapsulated Amorphous/Crystalline Heterophase NiFe Alloy by Microwave Thermal Shock for Boosting the Oxygen Evolution Reaction. ACS Catal 11:12284–12292 Kong X, Xu K, Zhang C, Dai J, Norooz Oliaee S, Li L, Zeng X, Wu C, Peng Z (2016) Free-Standing Two-Dimensional Ru Nanosheets with High Activity toward Water Splitting. ACS Catal 6:1487–1492 Kim JY, Choi J, Kim HY, Hwang E, Kim H-J, Ahn SH, Kim S-K (2015) Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides. Appl Surf Sci 359:227–235 Lin F, Qin H, Wang T, Yang L, Cao X, Jiao L (2021) Few-layered MoN–MnO heterostructures with interfacial-O synergistic active centers boosting electrocatalytic hydrogen evolution. J Mater Chem A 9:8325–8331 Wang T, Cao X, Jiao L (2021) Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 1:69–74 Fu L, Zeng X, Cheng G, Luo W (2018) IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions. ACS Appl Mater Interfaces 10:24993–24998 Zhang G, Shao Z-G, Lu W, Li G, Liu F, Yi B (2012) One-pot synthesis of Ir@Pt nanodendrites as highly active bifunctional electrocatalysts for oxygen reduction and oxygen evolution in acidic medium. Electrochem Commun 22:145–148 Strickler AL, Flores RA, King LA, Norskov JK, Bajdich M, Jaramillo TF (2019) Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media. ACS Appl Mater Interfaces 11:34059–34066 Zhu M, Shao Q, Qian Y, Huang X (2019) Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. Nano Energy 56:330–337 Pi Y, Guo J, Shao Q, Huang X (2018) Highly Efficient Acidic Oxygen Evolution Electrocatalysis Enabled by Porous Ir–Cu Nanocrystals with Three-Dimensional Electrocatalytic Surfaces. Chem Mater 30:8571–8578 Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media. Electrochem Solid-State Lett 13:B36 Park J, Choi S, Oh A, Jin H, Joo J, Baik H, Lee K (2019) Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horiz 4:727–734 Hartig-Weiss A, Miller M, Beyer H, Schmitt A, Siebel A, Freiberg ATS, Gasteiger HA, El-Sayed HA (2020) Iridium Oxide Catalyst Supported on Antimony-Doped Tin Oxide for High Oxygen Evolution Reaction Activity in Acidic Media. ACS Appl Nano Mater 3:2185–2196 Luo J, Tian X, Zeng J, Li Y, Song H, Liao S (2016) Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catal 6:6165–6174 Retuerto M, Pascual L, Calle-Vallejo F, Ferrer P, Gianolio D, Pereira AG, Garcia A, Torrero J, Fernandez-Diaz MT, Bencok P, Pena MA, Fierro JLG, Rojas S (2019) Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nat Commun 10:2041 Song HJ, Yoon H, Ju B, Kim DW (2020) Highly Efficient Perovskite-Based Electrocatalysts for Water Oxidation in Acidic Environments: A Mini Review. Adv Energy Mater 11:2002428 Edgington J, Schweitzer N, Alayoglu S, Seitz LC (2021) Constant Change: Exploring Dynamic Oxygen Evolution Reaction Catalysis and Material Transformations in Strontium Zinc Iridate Perovskite in Acid. J Am Chem Soc 143:9961–9971 Chen Y, Li H, Wang J, Du Y, Xi S, Sun Y, Sherburne M, Ager JW, 3rd; Fisher, A. C., Xu, Z. J. (2019) Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat Commun 10:572 Chang SH, Danilovic N, Chang KC, Subbaraman R, Paulikas AP, Fong DD, Highland MJ, Baldo PM, Stamenkovic VR, Freeland JW, Eastman JA, Markovic NM (2014) Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat Commun 5:4191 Immerz C, Paidar M, Papakonstantinou G, Bensmann B, Bystron T, Vidakovic-Koch T, Bouzek K, Sundmacher K, Hanke-Rauschenbach R (2018) Effect of the MEA design on the performance of PEMWE single cells with different sizes. J Appl Electrochem 48:701–711 Mo J, Kang Z, Yang G, Retterer ST, Cullen DA, Toops TJ, Green JB, Zhang F-Y (2016) Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Appl Energy 177:817–822 Grigoriev SA, Millet P, Volobuev SA, Fateev VN (2009) Optimization of porous current collectors for PEM water electrolysers. Int J Hydrogen Energy 34:4968–4973 Lædre S, Kongstein OE, Oedegaard A, Karoliussen H, Seland F (2017) Materials for Proton Exchange Membrane water electrolyzer bipolar plates. Int J Hydrogen Energy 42:2713–2723 Jung H-Y, Huang S-Y, Ganesan P, Popov BN (2009) Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. J Power Sources 194:972–975 Lettenmeier P, Wang R, Abouatallah R, Saruhan B, Freitag O, Gazdzicki P, Morawietz T, Hiesgen R, Gago AS, Friedrich KA (2017) Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers. Sci Rep 7:44035 Feng Q, Yuan XZ, Liu G, Wei B, Zhang Z, Li H, Wang H (2017) A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J Power Sources 366:33–55