PEG-penetrated chitosan–alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications

Progress in Biomaterials - Tập 4 Số 2-4 - Trang 101-112 - 2015
Anitha Radhakrishnan1, Geena Mariya Jose1, Muraleedhara G. Kurup1
1Department of Biochemistry, University of Kerala, Karyavattom, Thiruvananthapuram, Kerala, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baskurt OK, Meiselman HJ (1997) Cellular determinants of low-shear blood viscosity. Biorheology 34:235–247. doi: 10.1016/S0006-355X(97)00027-9

Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15:205–219. doi: 10.1089/ten.tea.2008.0131

Camci-Unal G, Annabi N, Dokmeci MR et al (2014) Hydrogels for cardiac tissue engineering. NPG Asia Mater 6:e99. doi: 10.1038/am.2014.19

Cattell MA, Anderson JC, Hasleton PS (1996) Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin Chim Acta Int J Clin Chem 245:73–84

Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178. doi: 10.1242/dmm.004077

Daniele MA, Adams AA, Naciri J et al (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35:1845–1856. doi: 10.1016/j.biomaterials.2013.11.009

Dawlee S, Sugandhi A, Balakrishnan B et al (2005) Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromolecules 6:2040–2048. doi: 10.1021/bm050013a

Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590. doi: 10.1016/j.cej.2014.01.065

Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

Even-Ram S, Artym V, Yamada KM (2006) Matrix control of stem cell fate. Cell 126:645–647. doi: 10.1016/j.cell.2006.08.008

Finosh GT, Jayabalan M (2012) Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure. Biomatter 2:1–14. doi: 10.4161/biom.19429

Finosh GT, Jayabalan M (2015) Hybrid amphiphilic bimodal hydrogels having mechanical and biological recognition characteristics for cardiac tissue engineering. RSC Adv 5:38183–38201. doi: 10.1039/C5RA04448K

Finosh GT, Jayabalan M, Vandana S, Raghu KG (2015) Hybrid alginate-polyester bimodal network hydrogel for tissue engineering—Influence of structured water on long-term cellular growth. Colloids Surf B Biointerfaces. doi: 10.1016/j.colsurfb.2015.03.020

Freudenberg U, Hermann A, Welzel PB et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060. doi: 10.1016/j.biomaterials.2009.06.002

Gemeinhart RA, Chen J, Park H, Park K (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 11:1371–1380

Gnanaprakasam Thankam F, Muthu J (2013) Influence of plasma protein–hydrogel interaction moderated by absorption of water on long-term cell viability in amphiphilic biosynthetic hydrogels. RSC Adv 3:24509. doi: 10.1039/c3ra43710h

Gnanaprakasam Thankam F, Muthu J (2014) Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction. Carbohydr Polym 112:235–244. doi: 10.1016/j.carbpol.2014.05.083

Gnanaprakasam Thankam F, Muthu J, Sankar V, Kozhiparambil Gopal R (2013) Growth and survival of cells in biosynthetic poly vinyl alcohol–alginate IPN hydrogels for cardiac applications. Colloids Surf B Biointerfaces 107:137–145. doi: 10.1016/j.colsurfb.2013.01.069

Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. doi: 10.1002/adma.200304907

Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202. doi: 10.1161/01.CIR.0000163546.27639.AA

Ishaug SL, Crane GM, Miller MJ et al (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28

Jiang B, Waller TM, Larson JC et al (2013) Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A 19:224–234. doi: 10.1089/ten.tea.2012.0120

Khoda AKMB, Ozbolat IT, Koc B (2013) Spatially multi-functional porous tissue scaffold. Procedia Eng 59:174–182. doi: 10.1016/j.proeng.2013.05.108

Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184. doi: 10.1039/C4TB00027G

Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

Lohani A, Singh G, Bhattacharya SS, Verma A (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:e583612. doi: 10.1155/2014/583612

Madden LR, Mortisen DJ, Sussman EM et al (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci. doi: 10.1073/pnas.1006442107

Mikos AG, Lyman MD, Freed LE, Langer R (1994) Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58

Myung D, Waters D, Wiseman M et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657. doi: 10.1002/pat.1134

Nanda S, Sood N, Reddy BVK, Markandeywar TS (2013) Preparation and characterization of poly(vinyl alcohol)-chondroitin sulphate hydrogel as scaffolds for articular cartilage regeneration. Indian J Mater Sci 2013:e516021. doi: 10.1155/2013/516021

Peppas NA, Huang Y, Torres-Lugo M et al (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29. doi: 10.1146/annurev.bioeng.2.1.9

Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi: 10.1002/adma.200501612

Pramanik S, Ataollahi F, Pingguan-Murphy B et al (2015) In vitro study of surface modified poly(ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Sci Rep. doi: 10.1038/srep09806

Qu X-H, Wu Q, Chen G-Q (2006) In vitro study on hemocompatibility and cytocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 17:1107–1121. doi: 10.1163/156856206778530704

Stosich MS, Mao JJ (2007) Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery. Plast Reconstr Surg 119:71–83. doi: 10.1097/01.prs.0000244840.80661.e7 (discussion 84–85)

Strehin I, Nahas Z, Arora K et al (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797. doi: 10.1016/j.biomaterials.2009.12.033

Thankam FG, Muthu J (2014a) Infiltration and sustenance of viability of cells by amphiphilic biosynthetic biodegradable hydrogels. J Mater Sci Mater Med. doi: 10.1007/s10856-014-5234-0

Thankam FG, Muthu J (2014b) Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability. J Mech Behav Biomed Mater 35:111–122. doi: 10.1016/j.jmbbm.2014.03.010

Thankam FG, Muthu J (2014c) Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction. Carbohydr Polym. doi: 10.1016/j.carbpol.2014.05.083

Thomson RC, Wake MC, Yaszemski MJ, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. In: Peppas PNA, Langer PRS (eds) Biopolymers II. Springer, Berlin, pp 245–274

Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

Wu X, Black L, Santacana-Laffitte G, Patrick CW (2007) Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A 81:59–65. doi: 10.1002/jbm.a.31003

Yu F, Cao X, Li Y et al (2013) An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry”. Polym Chem 5:1082–1090. doi: 10.1039/C3PY00869J