PEG-penetrated chitosan–alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baskurt OK, Meiselman HJ (1997) Cellular determinants of low-shear blood viscosity. Biorheology 34:235–247. doi: 10.1016/S0006-355X(97)00027-9
Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15:205–219. doi: 10.1089/ten.tea.2008.0131
Camci-Unal G, Annabi N, Dokmeci MR et al (2014) Hydrogels for cardiac tissue engineering. NPG Asia Mater 6:e99. doi: 10.1038/am.2014.19
Cattell MA, Anderson JC, Hasleton PS (1996) Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin Chim Acta Int J Clin Chem 245:73–84
Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178. doi: 10.1242/dmm.004077
Daniele MA, Adams AA, Naciri J et al (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35:1845–1856. doi: 10.1016/j.biomaterials.2013.11.009
Dawlee S, Sugandhi A, Balakrishnan B et al (2005) Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromolecules 6:2040–2048. doi: 10.1021/bm050013a
Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590. doi: 10.1016/j.cej.2014.01.065
Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351
Even-Ram S, Artym V, Yamada KM (2006) Matrix control of stem cell fate. Cell 126:645–647. doi: 10.1016/j.cell.2006.08.008
Finosh GT, Jayabalan M (2012) Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure. Biomatter 2:1–14. doi: 10.4161/biom.19429
Finosh GT, Jayabalan M (2015) Hybrid amphiphilic bimodal hydrogels having mechanical and biological recognition characteristics for cardiac tissue engineering. RSC Adv 5:38183–38201. doi: 10.1039/C5RA04448K
Finosh GT, Jayabalan M, Vandana S, Raghu KG (2015) Hybrid alginate-polyester bimodal network hydrogel for tissue engineering—Influence of structured water on long-term cellular growth. Colloids Surf B Biointerfaces. doi: 10.1016/j.colsurfb.2015.03.020
Freudenberg U, Hermann A, Welzel PB et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060. doi: 10.1016/j.biomaterials.2009.06.002
Gemeinhart RA, Chen J, Park H, Park K (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 11:1371–1380
Gnanaprakasam Thankam F, Muthu J (2013) Influence of plasma protein–hydrogel interaction moderated by absorption of water on long-term cell viability in amphiphilic biosynthetic hydrogels. RSC Adv 3:24509. doi: 10.1039/c3ra43710h
Gnanaprakasam Thankam F, Muthu J (2014) Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction. Carbohydr Polym 112:235–244. doi: 10.1016/j.carbpol.2014.05.083
Gnanaprakasam Thankam F, Muthu J, Sankar V, Kozhiparambil Gopal R (2013) Growth and survival of cells in biosynthetic poly vinyl alcohol–alginate IPN hydrogels for cardiac applications. Colloids Surf B Biointerfaces 107:137–145. doi: 10.1016/j.colsurfb.2013.01.069
Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. doi: 10.1002/adma.200304907
Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202. doi: 10.1161/01.CIR.0000163546.27639.AA
Ishaug SL, Crane GM, Miller MJ et al (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28
Jiang B, Waller TM, Larson JC et al (2013) Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A 19:224–234. doi: 10.1089/ten.tea.2012.0120
Khoda AKMB, Ozbolat IT, Koc B (2013) Spatially multi-functional porous tissue scaffold. Procedia Eng 59:174–182. doi: 10.1016/j.proeng.2013.05.108
Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184. doi: 10.1039/C4TB00027G
Lohani A, Singh G, Bhattacharya SS, Verma A (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:e583612. doi: 10.1155/2014/583612
Madden LR, Mortisen DJ, Sussman EM et al (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci. doi: 10.1073/pnas.1006442107
Mikos AG, Lyman MD, Freed LE, Langer R (1994) Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58
Myung D, Waters D, Wiseman M et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657. doi: 10.1002/pat.1134
Nanda S, Sood N, Reddy BVK, Markandeywar TS (2013) Preparation and characterization of poly(vinyl alcohol)-chondroitin sulphate hydrogel as scaffolds for articular cartilage regeneration. Indian J Mater Sci 2013:e516021. doi: 10.1155/2013/516021
Peppas NA, Huang Y, Torres-Lugo M et al (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29. doi: 10.1146/annurev.bioeng.2.1.9
Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi: 10.1002/adma.200501612
Pramanik S, Ataollahi F, Pingguan-Murphy B et al (2015) In vitro study of surface modified poly(ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Sci Rep. doi: 10.1038/srep09806
Qu X-H, Wu Q, Chen G-Q (2006) In vitro study on hemocompatibility and cytocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 17:1107–1121. doi: 10.1163/156856206778530704
Stosich MS, Mao JJ (2007) Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery. Plast Reconstr Surg 119:71–83. doi: 10.1097/01.prs.0000244840.80661.e7 (discussion 84–85)
Strehin I, Nahas Z, Arora K et al (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797. doi: 10.1016/j.biomaterials.2009.12.033
Thankam FG, Muthu J (2014a) Infiltration and sustenance of viability of cells by amphiphilic biosynthetic biodegradable hydrogels. J Mater Sci Mater Med. doi: 10.1007/s10856-014-5234-0
Thankam FG, Muthu J (2014b) Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability. J Mech Behav Biomed Mater 35:111–122. doi: 10.1016/j.jmbbm.2014.03.010
Thankam FG, Muthu J (2014c) Alginate based hybrid copolymer hydrogels—Influence of pore morphology on cell–material interaction. Carbohydr Polym. doi: 10.1016/j.carbpol.2014.05.083
Thomson RC, Wake MC, Yaszemski MJ, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. In: Peppas PNA, Langer PRS (eds) Biopolymers II. Springer, Berlin, pp 245–274
Wu X, Black L, Santacana-Laffitte G, Patrick CW (2007) Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A 81:59–65. doi: 10.1002/jbm.a.31003